Product Demand Prediction with Spatial Graph Neural Networks

被引:1
作者
Li, Jiale [1 ]
Fan, Li [2 ]
Wang, Xuran [3 ]
Sun, Tiejiang [4 ]
Zhou, Mengjie [5 ]
机构
[1] NYU, Tandon Sch Engn, New York, NY 10012 USA
[2] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[3] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[4] Changan Univ, Sch Informat Engn, Xian 710064, Peoples R China
[5] Univ Bristol, Dept Comp Sci, Bristol BS8 1QU, England
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
关键词
demand prediction; Graph Neural Network; spatial information;
D O I
10.3390/app14166989
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the rapidly evolving online marketplace, accurately predicting the demand for pre-owned items presents a significant challenge for sellers, impacting pricing strategies, product presentation, and marketing investments. Traditional demand prediction methods, while foundational, often fall short in addressing the dynamic and heterogeneous nature of e-commerce data, which encompasses textual descriptions, visual elements, geographic contexts, and temporal dynamics. This paper introduces a novel approach utilizing the Graph Neural Network (GNN) to enhance demand prediction accuracy by leveraging the spatial relationships inherent in online sales data, named SGNN. Drawing from the rich dataset provided in the fourth Kaggle competition, we construct a spatially aware graph representation of the marketplace, integrating advanced attention mechanisms to refine predictive accuracy. Our methodology defines the product demand prediction problem as a regression task on an attributed graph, capturing both local and global spatial dependencies that are fundamental to accurate predicting. Through attention-aware message propagation and node-level demand prediction, our model effectively addresses the multifaceted challenges of e-commerce demand prediction, demonstrating superior performance over traditional statistical methods, machine learning techniques, and even deep learning models. The experimental findings validate the effectiveness of our GNN-based approach, offering actionable insights for sellers navigating the complexities of the online marketplace. This research not only contributes to the academic discourse on e-commerce demand prediction but also provides a scalable and adaptable framework for future applications, paving the way for more informed and effective online sales strategies.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Edge-Based Graph Neural Networks for Cell-Graph Modeling and Prediction
    Hasegawa, Tai
    Arvidsson, Helena
    Tudzarovski, Nikolce
    Meinke, Karl
    Sugars, Rachael V.
    Nair, Aravind Ashok
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2023, 2023, 13939 : 265 - 277
  • [22] Cross-Mode Knowledge Adaptation for Bike Sharing Demand Prediction Using Domain-Adversarial Graph Neural Networks
    Liang, Yuebing
    Huang, Guan
    Zhao, Zhan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 3642 - 3653
  • [23] Spatial-temporal graph neural network traffic prediction based load balancing with reinforcement learning in cellular networks
    Liu, Shang
    He, Miao
    Wu, Zhiqiang
    Lu, Peng
    Gu, Weixi
    INFORMATION FUSION, 2024, 103
  • [24] Contrastive Hawkes graph neural networks with dynamic sampling for event prediction
    Mu, Zongshen
    Zhuang, Yueting
    Tang, Siliang
    NEUROCOMPUTING, 2024, 575
  • [25] Property prediction of fuel mixtures using pooled graph neural networks
    Leenhouts, Roel J.
    Larsson, Tara
    Verhelst, Sebastian
    Vermeire, Florence H.
    FUEL, 2025, 381
  • [26] Should we really use graph neural networks for transcriptomic prediction?
    Brouard, Celine
    Mourad, Raphael
    Vialaneix, Nathalie
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [27] Intelligent Prediction of Flood Disaster Risk Levels Based on Knowledge Graph and Graph Neural Networks
    Yang, Peisheng
    Xu, Xiaohua
    Shao, Meilan
    Liu, Yewei
    IEEE ACCESS, 2025, 13 : 8416 - 8424
  • [28] Spatial-Temporal Dual Graph Neural Network for Pedestrian Trajectory Prediction
    Zou, Yuming
    Piao, Xinglin
    Zhang, Yong
    Hu, Yongli
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1212 - 1217
  • [29] Advancing Brain Tumor Segmentation with Spectral-Spatial Graph Neural Networks
    Mohammadi, Sina
    Allali, Mohamed
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [30] Graph neural architecture prediction
    Gao, Jianliang
    Oloulade, Babatounde Moctard
    Al-Sabri, Raeed
    Chen, Jiamin
    Lyu, Tengfei
    Wu, Zhenpeng
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 66 (1) : 29 - 58