Some new minimax inequalities for centered convex bodies

被引:0
作者
Martini, Horst [1 ]
Mustafaev, Zokhrab [2 ]
Zarbaliev, Sakhavet M. [3 ]
机构
[1] Univ Technol Chemnitz, Fac Math, D-09107 Chemnitz, Germany
[2] Univ Houston Clear Lake, Dept Math, Houston, TX 77058 USA
[3] Natl Res Univ, Inst Informat Technol & Comp Sci, Dept Math & Comp Modeling, Moscow Power Engn Inst, Moscow 111250, Russia
关键词
Blaschke-Santal & oacute; inequality; Busemann's intersection inequality; Circumscribed cylinder; Cross-section measures; Inscribed cone; Intersection body; Projection body;
D O I
10.1007/s00010-024-01109-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this manuscript is to derive some new minimax inequalities for centered convex bodies in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>{d}$$\end{document}. As consequences, new characterizations of ellipsoids will be established as well. Some open problems related to the Busemann-Petty list of problems will also be discussed.
引用
收藏
页码:1143 / 1152
页数:10
相关论文
共 19 条
[1]   A solution to the fifth and the eighth Busemann-Petty problems in a small neighborhood of the Euclidean ball [J].
Alfonseca, M. Angeles ;
Nazarov, Fedor ;
Ryabogin, Dmitry ;
Yaskin, Vladyslav .
ADVANCES IN MATHEMATICS, 2021, 390
[2]  
[Anonymous], 1990, Contemp. Math, DOI DOI 10.1090/CONM/113/1108653
[3]  
Bezdek K., 2019, VOLUMETRIC DISCRETE
[4]  
BLASCHKE W, 1917, BER VERH SACHS AKAD, V69, P306
[5]   Volumes of projection bodies [J].
Brannen, NS .
MATHEMATIKA, 1996, 43 (86) :255-264
[6]  
Busemann H., 1956, Math. Scand., V4, P88, DOI [10.7146/math.scand.a-10457, DOI 10.7146/MATH.SCAND.A-10457]
[7]  
BUSEMANN H, 1953, PAC J MATH, V3, P1, DOI DOI 10.2140/PJM.1953.3.1
[8]  
Gardner RJ., 2006, Geometric Tomography
[9]   On the volume of the convex hull of two convex bodies [J].
Horvath, Akos G. ;
Langi, Zsolt .
MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02) :219-229
[10]  
Koldobsky A., 2005, Mathematical Surveys and Monographs, P116, DOI 10.1090/surv/116