Modification with graphite and sulfurized amorphous carbon for high-performance silicon anodes in lithium-ion batteries

被引:1
|
作者
Li, Ling [1 ]
Qin, Rongrong [1 ]
Zhan, Ruoning [2 ]
Tu, Chenggang [3 ]
Liu, Xuanli [1 ]
Liu, Leibin [1 ]
Deng, Lingfeng [1 ,4 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Mat Sci & Engn, Changsha, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Changsha, Peoples R China
[3] Changde Coll Sci & Technol, Changde, Peoples R China
[4] Hunan Prov Key Lab Mat Surface & Interface Sci & T, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Silicon-based materials; Sulfonated polyacrylonitrile; Graphite; Lithium-ion batteries; HIGH-ENERGY; NANOPARTICLES; CONSTRUCTION; PROGRESS; SPECTRA; WASTE;
D O I
10.1016/j.est.2024.113196
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Silicon-based materials are considered among the most promising anode materials for the next generation of lithium-ion batteries due to their abundant reserves, high theoretical capacity, and lower discharge potentials. However, the poor conductivity, significant volume expansion, and severe capacity fading of silicon hinder its commercial application. The synergistic use of silicon and graphite is an effective way to address these issues but faces problems such as persistent interface and structural stability challenges. This study employs sulfur-doped carbon derived from sulfonated polyacrylonitrile to encapsulate silicon, with graphite serving as the conductive medium. Through a combined wet chemical and pyrolysis process, we synthesized Si@SPANdC/Gr composite materials with superior electrochemical performance. The 3gSi@SPANdC/Gr composite anode material, containing a low silicon content (similar to 19.1 wt%), demonstrated a reversible capacity of 628.8 mAh g(-1) at a current density of 0.2 A g(-1) over 200 cycles, with an initial Coulombic efficiency of 71.28 %. Even at a higher current density of 1 A g(-1), it maintained a relatively high reversible capacity of 516.8 mAh g(-1) after 400 cycles, indicating good cycle stability. In addition, a full cell assembled with the 3gSi@SPANdC/Gr anode and commercial LiCoO4 cathode also shows an impressive cycling performance. This research provides a low-cost and novel solution for the commercial application of high-performance silicon-based lithium-ion batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Microsized Silicon/Carbon Composite Anodes through In Situ Polymerization of Phenolic Resin onto Silicon Microparticles for High-Performance Lithium-Ion Batteries
    Ma, Lei
    Fu, Xiaomeng
    Zhao, Fangfang
    Yu, Liming
    Su, Wenda
    Wei, Liangming
    Tang, Gen
    Wang, Yue
    Wu, Fang
    Guo, Xiang
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (09) : 4989 - 4999
  • [32] Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries
    Huo, Kaifu
    An, Weili
    Fu, Jijiang
    Gao, Biao
    Wang, Lei
    Peng, Xiang
    Cheng, Gary J.
    Chu, Paul K.
    JOURNAL OF POWER SOURCES, 2016, 324 : 233 - 238
  • [33] Graphene Caging Silicon Particles for High-Performance Lithium-Ion Batteries
    Nie, Ping
    Le, Zaiyuan
    Chen, Gen
    Liu, Dan
    Liu, Xiaoyan
    Wu, Hao Bin
    Xu, Pengcheng
    Li, Xinru
    Liu, Fang
    Chang, Limin
    Zhang, Xiaogang
    Lu, Yunfeng
    SMALL, 2018, 14 (25)
  • [34] Highly Stretchable Conductive Glue for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
    Wang, Lei
    Liu, Tiefeng
    Peng, Xiang
    Zeng, Wenwu
    Jin, Zhenzhen
    Tian, Weifeng
    Gao, Biao
    Zhou, Yinhua
    Chu, Paul K.
    Huo, Kaifu
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (03)
  • [35] Silicon Thin Films as Anodes for High-Performance Lithium-Ion Batteries with Effective Stress Relaxation
    Yu, Cunjiang
    Li, Xin
    Ma, Teng
    Rong, Jiepeng
    Zhang, Rongjun
    Shaffer, Joseph
    An, Yonghao
    Liu, Qiang
    Wei, Bingqing
    Jiang, Hanqing
    ADVANCED ENERGY MATERIALS, 2012, 2 (01) : 68 - 73
  • [36] Facile synthesis of hybrid pitch-based soft carbon as high-performance silicon/carbon anodes for lithium-ion batteries
    Liu, Zetao
    Du, Juntao
    Jia, Huina
    Wang, Wenchao
    Zhang, Minxin
    Li, Tianjin
    Nie, Yi
    Liu, Tianqing
    Song, Kedong
    IONICS, 2022, 28 (08) : 3709 - 3718
  • [37] Hydrocolloids as binders for graphite anodes of lithium-ion batteries
    Cuesta, Nuria
    Ramos, Alberto
    Camean, Ignacio
    Antuna, Cristina
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2015, 155 : 140 - 147
  • [38] Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries
    Xu, Yunhua
    Zhu, Yujie
    Wang, Chunsheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (25) : 9751 - 9757
  • [39] Pretreatment of Graphite Anodes with Lithium Sulfate to Improve the Cycle Performance of Lithium-Ion Batteries
    Cui, Xiaoling
    Tang, Fengjuan
    Li, Chunlei
    Zhang, Yu
    Wang, Peng
    Li, Shiyou
    Ye, Xiushen
    ENERGY TECHNOLOGY, 2017, 5 (04) : 549 - 556
  • [40] Binder-free silicon anodes wrapped in multiple graphene shells for high-performance lithium-ion batteries
    Kim, So Yeun
    Kim, Chang Hyo
    Yang, Cheol-Min
    JOURNAL OF POWER SOURCES, 2021, 486