A carboxymethyl cellulose/chitosan-based hydrogel harvests robust adhesive, on-demand detachment and self-healing performances for deep burn healing

被引:12
|
作者
Li, Mengya [1 ]
Qu, Haofan [1 ]
Li, Qin [1 ]
Lu, Shengchang [1 ,2 ]
Wu, Yang [1 ,3 ]
Tang, Zuwu [4 ]
Liu, Xiaolong [5 ]
Yuan, Zhanhui [1 ,2 ]
Huang, Liulian [1 ,2 ]
Chen, Lihui [1 ,2 ]
Wu, Hui [1 ,2 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Mat Engn, 63 Xiyuangong Rd, Fuzhou 350108, Fujian, Peoples R China
[2] Natl Forestry & Grassland Adm, Key Lab Plant Fiber Funct Mat, Fuzhou 350108, Fujian, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Hort, Key Lab, Minist Educ Genet Breeding & Multiple Utilizat Cro, Fuzhou 350002, Fujian, Peoples R China
[4] Fujian Polytech Normal Univ, Sch Mat & Packaging Engn, Fuzhou 350300, Fujian, Peoples R China
[5] Jomoo Kitchen & Bath Co LTD, Quanzhou 362000, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Burn wound healing; Cellulose; Chitosan; Dopamine; Schiff-base; ANTIBACTERIAL; CHITOSAN;
D O I
10.1016/j.cej.2024.155552
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The irregularities resulting from burns and the discomfort associated with changing dressings during treatment remain challenging to provide effective wound therapy. Hydrogels typically lack the capacity to adhere to tissue and are unable to remain at the wound site for an adequate duration, or fail to detach from tissue when required. In this study, a carboxymethyl cellulose/chitosan-based hydrogel with robust tissue adhesion, self-healing and on-demand detachment was designed via a Schiff-base reaction for deep burn healing. The network structure is self-repairing and does not require external stimulation. The injectable hydrogel fragments undergo self-healing, forming a piece of hydrogel that adapts to the shape of the wound and completely fills the scald wound. The Schiff-base reaction in the hydrogel is formed by the aldehyde group of dialdehyde-modified carboxymethyl cellulose (DCMC) and the amino group of dopamine modified carboxymethyl chitosan (CS-DA), which acts as a dynamic crosslink and endows the hydrogel with self-healing capability and on-demand detachment from tissues by using a benign amino acid solution. Additionally, the incorporation of dopamine has been demonstrated to augment the adhesive properties of the hydrogel. Cytotoxicity assays revealed that the hydrogels exhibit favourable biocompatibility. This research offers a promising approach for the management of burn injuries and represents a significant advancement in the development of cellulose/chitosan hydrogels for biomedical applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] A self-healing hydrogel based on oxidized microcrystalline cellulose and carboxymethyl chitosan as wound dressing material
    Yin, Huishuang
    Song, Peiqin
    Chen, Xingyu
    Huang, Qiuyan
    Huang, Huihua
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 221 : 1606 - 1617
  • [12] Autonomous Chitosan-Based Self-Healing Hydrogel Formed through Noncovalent Interactions
    Zhang, Zhong-Xing
    Liow, Sing Shy
    Xue, Kun
    Zhang, Xikui
    Li, Zibiao
    Loh, Xian Jun
    ACS APPLIED POLYMER MATERIALS, 2019, 1 (07) : 1769 - +
  • [13] Carboxymethyl chitosan and dialdehyde cellulose nanocrystal based injectable self-healing emulsion gel
    Zhou, Xiaoshun
    Zhang, Baoyi
    Huang, Weijuan
    CARBOHYDRATE POLYMERS, 2024, 338
  • [14] Recent advances in chitosan-based self-healing materials
    Ding, Fuyuan
    Li, Houbin
    Du, Yumin
    Shi, Xiaowen
    RESEARCH ON CHEMICAL INTERMEDIATES, 2018, 44 (08) : 4827 - 4840
  • [15] Recent advances in chitosan-based self-healing materials
    Fuyuan Ding
    Houbin Li
    Yumin Du
    Xiaowen Shi
    Research on Chemical Intermediates, 2018, 44 : 4827 - 4840
  • [16] Gelatin-based adhesive hydrogel with self-healing, hemostasis, and electrical conductivity
    Han, Kai
    Bai, Que
    Wu, Wendong
    Sun, Na
    Cui, Ning
    Lu, Tingli
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 183 : 2142 - 2151
  • [17] On-Demand Removable Chitosan Based Self-Healing and Antibacterial Hydrogel for Delivery of Tetracycline and Curcumin As Potential Wound Dressing Material
    Kikani, Twara
    Thale, Rutuja
    Thakore, Sonal
    ACS APPLIED BIO MATERIALS, 2024, 7 (10): : 6506 - 6519
  • [18] Adhesive, Conductive, Self-Healing, and Antibacterial Hydrogel Based on Chitosan-Polyoxometalate Complexes for Wearable Strain Sensor
    Wei, Xinran
    Ma, Ke
    Cheng, Yongbin
    Sun, Leyun
    Chen, Daijun
    Zhao, Xiaoli
    Lu, Hao
    Song, Botao
    Yang, Kewu
    Jia, Pengxiang
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (07) : 2541 - 2549
  • [19] Polysaccharide-Based Adhesive Antibacterial and Self-Healing Hydrogel for Sealing Hemostasis
    Zhao, Xiaoli
    Huang, Ya-feng
    Tian, Xuan
    Luo, Jinni
    Wang, Huanxia
    Wang, Jinfei
    Chen, Yuan
    Jia, Pengxiang
    BIOMACROMOLECULES, 2022, 23 (12) : 5106 - 5115
  • [20] Carboxymethyl chitosan/dialdehyde quaternized pullulan self-healing hydrogel loaded with tranexamic acid for rapid hemostasis
    Chen, Aoqing
    Li, Boyuan
    Dang, Qifeng
    Liu, Chengsheng
    Shi, Lufei
    Niu, Siyu
    Wang, Shiyun
    Zhao, Yan
    Zhang, Bonian
    Cha, Dongsu
    CARBOHYDRATE POLYMERS, 2025, 348