State-of-Health prediction of lithium-ion batteries based on a low dimensional Gaussian Process Regression

被引:3
作者
Pohlmann, Sebastian [1 ]
Mashayekh, Ali [2 ]
Stroebl, Florian [3 ]
Karnehm, Dominic [1 ]
Kuder, Manuel [4 ]
Neve, Antje [1 ]
Weyh, Thomas [2 ]
机构
[1] Univ Bundeswehr Munich, Inst Distributed Intelligent Syst, Werner Heisenberg Weg 39, D-85577 Neubiberg, Bavaria, Germany
[2] Univ Bundeswehr Munich, Inst Elect Energy Syst, Werner Heisenberg Weg 39, D-85577 Neubiberg, Bavaria, Germany
[3] Univ Appl Sci Munich, Inst Sustainable Energy Syst, Lothstr 64, D-80335 Munich, Bavaria, Germany
[4] BAVERTIS GmbH, Marienwerderstr 6, D-81929 Munich, Bavaria, Germany
关键词
Lithium-ion battery; State of health; Machine learning; Gaussian Process Regression; CAPACITY; MODELS;
D O I
10.1016/j.est.2024.111649
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An accurate determination of the condition of a battery is a key challenge in operation. As the performance of lithium-ion batteries is degrading over time, an accurate prediction of the State-of-Health would improve the overall efficiency and safety. This paper presents a prediction method for the State-of-Health based on a Gaussian Process Regression with an automatic relevance determination kernel in a single model for three different types of battery cells. After reducing the dimension of the problem and a sensitivity analysis of the features, the model is trained, validated, and further tested on unseen data. A minimum test error is obtained with a mean absolute error of 1.33%. Combined with the low uncertainty of the prediction results, this shows the applicability and the great potential of forecasting the condition of a battery using data-driven methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] State of Health Prediction of Lithium-Ion Batteries Based on the Discharge Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Shi, Yuanhao
    Zeng, Jianchao
    ELECTRONICS, 2021, 10 (12)
  • [42] A Computationally Efficient Approach for the State-of-Health Estimation of Lithium-Ion Batteries
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    ENERGIES, 2023, 16 (14)
  • [43] A Review of State-of-health Estimation of Lithium-ion Batteries: Experiments and Data
    Zhou, Ruomei
    Fu, Shasha
    Peng, Weiwen
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [44] State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR
    Guo, Yongfang
    Huang, Kai
    Yu, Xiangyuan
    Wang, Yashuang
    ELECTROCHIMICA ACTA, 2022, 428
  • [45] State-of-health estimation for lithium-ion batteries based on partial charging segment and stacking model fusion
    Xu, Jinli
    Liu, Baolei
    Zhang, Guangya
    Zhu, Jiwei
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (01) : 383 - 397
  • [46] Available Capacity Estimation of Lithium-ion Batteries Based on Optimized Gaussian Process Regression
    Shen J.-W.
    Ma W.-S.
    Xiao R.-X.
    Liu Y.-G.
    Chen Z.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2022, 35 (08): : 31 - 43
  • [47] Domain generalization-based state-of-health estimation of lithium-ion batteries
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Li, Xin
    Kong, Huifang
    Chai, Yi
    Li, Penghua
    JOURNAL OF POWER SOURCES, 2024, 610
  • [48] State-of-health estimation of lithium-ion batteries based on QPSO-BPNN
    Yao, Yongming
    Li, Fei
    Li, Haofa
    Liu, Junchi
    Wang, Xindi
    Li, Tianyu
    IONICS, 2025, 31 (02) : 1437 - 1449
  • [49] A physics-informed dynamic deep autoencoder for accurate state-of-health prediction of lithium-ion battery
    Xu, Zhaoyi
    Guo, Yanjie
    Saleh, Joseph Homer
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18) : 15997 - 16017
  • [50] Dynamic Equivalent Circuit Model to Estimate State-of-Health of Lithium-Ion Batteries
    Amir, Shehla
    Gulzar, Moneeba
    Tarar, Muhammad O.
    Naqvi, Ijaz H.
    Zaffar, Nauman A.
    Pecht, Michael G.
    IEEE ACCESS, 2022, 10 : 18279 - 18288