State-of-Health prediction of lithium-ion batteries based on a low dimensional Gaussian Process Regression

被引:3
|
作者
Pohlmann, Sebastian [1 ]
Mashayekh, Ali [2 ]
Stroebl, Florian [3 ]
Karnehm, Dominic [1 ]
Kuder, Manuel [4 ]
Neve, Antje [1 ]
Weyh, Thomas [2 ]
机构
[1] Univ Bundeswehr Munich, Inst Distributed Intelligent Syst, Werner Heisenberg Weg 39, D-85577 Neubiberg, Bavaria, Germany
[2] Univ Bundeswehr Munich, Inst Elect Energy Syst, Werner Heisenberg Weg 39, D-85577 Neubiberg, Bavaria, Germany
[3] Univ Appl Sci Munich, Inst Sustainable Energy Syst, Lothstr 64, D-80335 Munich, Bavaria, Germany
[4] BAVERTIS GmbH, Marienwerderstr 6, D-81929 Munich, Bavaria, Germany
关键词
Lithium-ion battery; State of health; Machine learning; Gaussian Process Regression; CAPACITY; MODELS;
D O I
10.1016/j.est.2024.111649
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An accurate determination of the condition of a battery is a key challenge in operation. As the performance of lithium-ion batteries is degrading over time, an accurate prediction of the State-of-Health would improve the overall efficiency and safety. This paper presents a prediction method for the State-of-Health based on a Gaussian Process Regression with an automatic relevance determination kernel in a single model for three different types of battery cells. After reducing the dimension of the problem and a sensitivity analysis of the features, the model is trained, validated, and further tested on unseen data. A minimum test error is obtained with a mean absolute error of 1.33%. Combined with the low uncertainty of the prediction results, this shows the applicability and the great potential of forecasting the condition of a battery using data-driven methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
    Yang, Duo
    Zhang, Xu
    Pan, Rui
    Wang, Yujie
    Chen, Zonghai
    JOURNAL OF POWER SOURCES, 2018, 384 : 387 - 395
  • [32] State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process With Modeling the Relaxation Effect
    Xu, Xiaodong
    Yu, Chuanqiang
    Tang, Shengjin
    Sun, Xiaoyan
    Si, Xiaosheng
    Wu, Lifeng
    IEEE ACCESS, 2019, 7 : 105186 - 105201
  • [33] State of Health Trajectory Prediction Based on Multi-Output Gaussian Process Regression for Lithium-Ion Battery
    Wang, Jiwei
    Deng, Zhongwei
    Li, Jinwen
    Peng, Kaile
    Xu, Lijun
    Guan, Guoqing
    Abudula, Abuliti
    BATTERIES-BASEL, 2022, 8 (10):
  • [34] State-of-Health Prediction of lithium-Ion Battery Based on Transfer Learning
    Hou, Jiayu
    Yu, Ping
    Zhang, Fengying
    Liu, Dingding
    Li, Zuxin
    2022 6TH INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, ISCSIC, 2022, : 185 - 189
  • [35] Domain generalization-based state-of-health estimation of lithium-ion batteries
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Li, Xin
    Kong, Huifang
    Chai, Yi
    Li, Penghua
    JOURNAL OF POWER SOURCES, 2024, 610
  • [36] State-of-health estimation of lithium-ion batteries based on QPSO-BPNN
    Yao, Yongming
    Li, Fei
    Li, Haofa
    Liu, Junchi
    Wang, Xindi
    Li, Tianyu
    IONICS, 2025, 31 (02) : 1437 - 1449
  • [37] CyFormer: Accurate State-of-Health Prediction of Lithium-Ion Batteries via Cyclic Attention
    Nie, Zhiqiang
    Zhao, Jiankun
    Li, Qicheng
    Qin, Yong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [38] State-of-health estimation for the lithium-ion battery based on support vector regression
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    APPLIED ENERGY, 2018, 227 : 273 - 283
  • [39] Modified Gaussian Process Regression Models for Cyclic Capacity Prediction of Lithium-Ion Batteries
    Liu, Kailong
    Hu, Xiaosong
    Wei, Zhongbao
    Li, Yi
    Jiang, Yan
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2019, 5 (04) : 1225 - 1236
  • [40] Research on State-of-Health Estimation for Lithium-Ion Batteries Based on the Charging Phase
    Du, Changqing
    Qi, Rui
    Ren, Zhong
    Xiao, Di
    ENERGIES, 2023, 16 (03)