State-of-Health prediction of lithium-ion batteries based on a low dimensional Gaussian Process Regression

被引:3
作者
Pohlmann, Sebastian [1 ]
Mashayekh, Ali [2 ]
Stroebl, Florian [3 ]
Karnehm, Dominic [1 ]
Kuder, Manuel [4 ]
Neve, Antje [1 ]
Weyh, Thomas [2 ]
机构
[1] Univ Bundeswehr Munich, Inst Distributed Intelligent Syst, Werner Heisenberg Weg 39, D-85577 Neubiberg, Bavaria, Germany
[2] Univ Bundeswehr Munich, Inst Elect Energy Syst, Werner Heisenberg Weg 39, D-85577 Neubiberg, Bavaria, Germany
[3] Univ Appl Sci Munich, Inst Sustainable Energy Syst, Lothstr 64, D-80335 Munich, Bavaria, Germany
[4] BAVERTIS GmbH, Marienwerderstr 6, D-81929 Munich, Bavaria, Germany
关键词
Lithium-ion battery; State of health; Machine learning; Gaussian Process Regression; CAPACITY; MODELS;
D O I
10.1016/j.est.2024.111649
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An accurate determination of the condition of a battery is a key challenge in operation. As the performance of lithium-ion batteries is degrading over time, an accurate prediction of the State-of-Health would improve the overall efficiency and safety. This paper presents a prediction method for the State-of-Health based on a Gaussian Process Regression with an automatic relevance determination kernel in a single model for three different types of battery cells. After reducing the dimension of the problem and a sensitivity analysis of the features, the model is trained, validated, and further tested on unseen data. A minimum test error is obtained with a mean absolute error of 1.33%. Combined with the low uncertainty of the prediction results, this shows the applicability and the great potential of forecasting the condition of a battery using data-driven methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Time Series Feature extraction for Lithium-Ion batteries State-Of-Health prediction
    Jorge, Ines
    Mesbahi, Tedjani
    Samet, Ahmed
    Bone, Romuald
    JOURNAL OF ENERGY STORAGE, 2023, 59
  • [22] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Health Indicator and Gaussian Process Regression Model
    Liu, Jian
    Chen, Ziqiang
    IEEE ACCESS, 2019, 7 : 39474 - 39484
  • [23] Improving the state-of-health estimation of lithium-ion batteries based on limited labeled data
    Han, Dou
    Zhang, Yongzhi
    Ruan, Haijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [24] Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization
    Dai, Houde
    Wang, Jiaxin
    Huang, Yiyang
    Lai, Yuan
    Zhu, Liqi
    RENEWABLE ENERGY, 2024, 222
  • [25] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Liu, Yanshuo
    Wang, Licheng
    Li, Dezhi
    Wang, Kai
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2023, 8 (01)
  • [26] State-of-health estimation for the lithium-ion battery based on support vector regression
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    APPLIED ENERGY, 2018, 227 : 273 - 283
  • [27] State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression
    Zhou, Yong
    Dong, Guangzhong
    Tan, Qianqian
    Han, Xueyuan
    Chen, Chunlin
    Wei, Jingwen
    ENERGY, 2023, 262
  • [28] Modified Gaussian Process Regression Models for Cyclic Capacity Prediction of Lithium-Ion Batteries
    Liu, Kailong
    Hu, Xiaosong
    Wei, Zhongbao
    Li, Yi
    Jiang, Yan
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2019, 5 (04) : 1225 - 1236
  • [29] Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries
    Deng, Yuanwang
    Ying, Hejie
    Jiaqiang, E.
    Zhu, Hao
    Wei, Kexiang
    Chen, Jingwei
    Zhang, Feng
    Liao, Gaoliang
    ENERGY, 2019, 176 : 91 - 102
  • [30] Research on State-of-Health Estimation for Lithium-Ion Batteries Based on the Charging Phase
    Du, Changqing
    Qi, Rui
    Ren, Zhong
    Xiao, Di
    ENERGIES, 2023, 16 (03)