Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field

被引:0
作者
Yoshida, Nakahiro [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Ibragimov-Has'minskii theory; Quasi-likelihood analysis; Polynomial type large deviation; Random field; Asymptotic decision theory; Non-ergodic statistics; CONVERGENCE;
D O I
10.1007/s10463-024-00907-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The IHK program is a general framework in asymptotic decision theory, introduced by Ibragimov and Hasminskii and extended to semimartingales by Kutoyants. The quasi-likelihood analysis (QLA) asserts that a polynomial type large deviation inequality is always valid if the quasi-likelihood random field is asymptotically quadratic and if a key index reflecting the identifiability is non-degenerate. As a result, following the IHK program, the QLA gives a way to inference for various nonlinear stochastic processes. This paper provides a reformed and simplified version of the QLA and improves accessibility to the theory. As an example of the advantages of the scheme, the user can obtain asymptotic properties of the quasi-Bayesian estimator by only verifying non-degeneracy of the key index.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 29 条
[1]   Statistical inference for ergodic point processes and application to Limit Order Book [J].
Clinet, Simon ;
Yoshida, Nakahiro .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (06) :1800-1839
[2]   Schwarz type model comparison for LAQ models [J].
Eguchi, Shoichi ;
Masuda, Hiroki .
BERNOULLI, 2018, 24 (03) :2278-2327
[3]  
Ibragimov I., 1973, THEOR PROBAB APPL, V17, P445, DOI DOI 10.1137/1117054
[4]  
Ibragimov I.A., 1981, STAT ESTIMATION APPL
[5]  
IBRAGIMOV IA, 1973, THEOR PROBAB APPL, V18, P76, DOI DOI 10.1137/1118006
[6]   Global jump filters and quasi-likelihood analysis for volatility [J].
Inatsugu, Haruhiko ;
Yoshida, Nakahiro .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (03) :555-598
[7]  
Kamatani K, 2015, STAT INFER STOCH PRO, V18, P177, DOI DOI 10.1007/S11203-014-9107-4
[8]  
Kinoshita Y., 2019, ARXIV
[9]  
Kutoyants Y., 1994, Mathematics and its Applications, V300
[10]  
Kutoyants Y. A., 1998, STAT INFERENCE SPATI, V134