Learning Sparse High-Dimensional Matrix-Valued Graphical Models From Dependent Data

被引:1
作者
Tugnait, Jitendra K. [1 ]
机构
[1] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
基金
美国国家科学基金会;
关键词
Covariance matrices; Time series analysis; Estimation; Vectors; Sparse matrices; Analytical models; Optimization; Sparse graph learning; matrix graph estimation; matrix time series; undirected graph; inverse spectral density estimation; SELECTION; IDENTIFICATION; LASSO; SETS;
D O I
10.1109/TSP.2024.3395897
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional, stationary matrix-variate Gaussian time series. All past work on high-dimensional matrix graphical models assumes that independent and identically distributed (i.i.d.) observations of the matrix-variate are available. Here we allow dependent observations. We consider a sparse-group lasso-based frequency-domain formulation of the problem with a Kronecker-decomposable power spectral density (PSD), and solve it via an alternating direction method of multipliers (ADMM) approach. The problem is bi-convex which is solved via flip-flop optimization. We provide sufficient conditions for local convergence in the Frobenius norm of the inverse PSD estimators to the true value. This result also yields a rate of convergence. We illustrate our approach using numerical examples utilizing both synthetic and real data.
引用
收藏
页码:3363 / 3379
页数:17
相关论文
共 53 条
[1]   Data-Driven Link Prediction Over Graphical Models [J].
Alpago, Daniele ;
Zorzi, Mattia ;
Ferrante, Augusto .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (04) :2215-2228
[2]   Identification of Sparse Reciprocal Graphical Models [J].
Alpago, Daniele ;
Zorzi, Mattia ;
Ferrante, Augusto .
IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (04) :659-664
[3]   ARMA Identification of Graphical Models [J].
Avventi, Enrico ;
Lindquist, Anders G. ;
Wahlberg, Bo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (05) :1167-1178
[4]  
Banerjee O, 2008, J MACH LEARN RES, V9, P485
[5]   REGULARIZED ESTIMATION IN SPARSE HIGH-DIMENSIONAL TIME SERIES MODELS [J].
Basu, Sumanta ;
Michailidis, George .
ANNALS OF STATISTICS, 2015, 43 (04) :1535-1567
[6]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[7]  
BRILLINGER DR, 1981, TIME SERIES DATA ANA
[8]   Dynamic Matrix-Variate Graphical Models [J].
Carvalho, Carlos M. ;
West, Mike .
BAYESIAN ANALYSIS, 2007, 2 (01) :69-97
[9]   Autoregressive models for matrix-valued time series [J].
Chen, Rong ;
Xiao, Han ;
Yang, Dan .
JOURNAL OF ECONOMETRICS, 2021, 222 (01) :539-560
[10]   Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard [J].
Chen, Wei ;
Wang, Fusheng ;
Xiao, Guofeng ;
Wu, Kai ;
Zhang, Shixuan .
ATMOSPHERE, 2015, 6 (08) :1243-1258