On the well-posedness of a stochastic Navier-Stokes-Vlasov-Fokker-Planck system

被引:0
作者
Chuyeh Nfor, Evaristus [1 ]
Woukeng, Jean Louis [1 ]
机构
[1] Univ Dschang, Dschang, Cameroon
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 05期
关键词
Stochastic Navier-Stokes; Vlasov-Fokker-Planck equation; Probabilistic weak solution; Cylindrical Wiener process; Compactness; GLOBAL WEAK SOLUTIONS; EXISTENCE; EQUATIONS; REGULARITY;
D O I
10.1007/s00033-024-02327-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The work is concerned with the motion of a system of particles evolving in a fluid occupying a three-dimensional bounded domain. The motion of particles is described by a Vlasov-Fokker-Planck equation while the fluid is governed by the incompressible stochastic Navier-Stokes equations. The interaction between particles and fluid is described by Stokes's drag force. We prove the existence of a unique weak probabilistic solution. To achieve our goal, we use the Galerkin approximation combined with some compactness results of probabilistic type, as well as the Yamada-Watanabe theorem.
引用
收藏
页数:26
相关论文
共 32 条
[1]  
[Anonymous], 2007, BROWNIAN MOTION STOC, P451
[2]  
Anoshchenko O, 1997, MATH METHOD APPL SCI, V20, P495, DOI 10.1002/(SICI)1099-1476(199704)20:6<495::AID-MMA858>3.0.CO
[3]  
2-O
[4]   Coupling Euler and Vlasov equations in the context of sprays: The local-in-time, classical solutions [J].
Baranger, C ;
Desvillettes, L .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2006, 3 (01) :1-26
[5]   STOCHASTIC NAVIER-STOKES EQUATIONS [J].
BENSOUSSAN, A .
ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) :267-304
[6]  
Bensoussan A., 1992, PARTIAL DIFFERENTIAL, V268, P37
[7]  
Boudin L, 2009, DIFFER INTEGRAL EQU, V22, P1247
[8]  
Carrillo JA, 1998, MATH METHOD APPL SCI, V21, P907, DOI 10.1002/(SICI)1099-1476(19980710)21:10<907::AID-MMA977>3.0.CO
[9]  
2-W
[10]   Stability and asymptotic analysis of a fluid-particle interaction model [J].
Carrillo, Jose A. ;
Goudon, Thierry .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (09) :1349-1379