An Efficient Green AI Approach to Time Series Forecasting Based on Deep Learning

被引:2
|
作者
Balderas, Luis [1 ,2 ,3 ,4 ]
Lastra, Miguel [2 ,3 ,4 ,5 ]
Benitez, Jose M. [1 ,2 ,3 ,4 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada 18071, Spain
[2] Univ Granada, Distributed Computat Intelligence & Time Series La, Granada 18071, Spain
[3] Univ Granada, Sport & Hlth Univ Res Inst, Granada 18071, Spain
[4] Univ Granada, Andalusian Res Inst Data Sci & Computat Intelligen, Granada 18071, Spain
[5] Univ Granada, Dept Software Engn, Granada 18071, Spain
关键词
Green AI; dense feed-forward neural network simplification; time series forecasting;
D O I
10.3390/bdcc8090120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series forecasting is undoubtedly a key area in machine learning due to the numerous fields where it is crucial to estimate future data points of sequences based on a set of previously observed values. Deep learning has been successfully applied to this area. On the other hand, growing concerns about the steady increase in the amount of resources required by deep learning-based tools have made Green AI gain traction as a move towards making machine learning more sustainable. In this paper, we present a deep learning-based time series forecasting methodology called GreeNNTSF, which aims to reduce the size of the resulting model, thereby diminishing the associated computational and energetic costs without giving up adequate forecasting performance. The methodology, based on the ODF2NNA algorithm, produces models that outperform state-of-the-art techniques not only in terms of prediction accuracy but also in terms of computational costs and memory footprint. To prove this claim, after presenting the main state-of-the-art methods that utilize deep learning for time series forecasting and introducing our methodology we test GreeNNTSF on a selection of real-world forecasting problems that are commonly used as benchmarks, such as SARS-CoV-2 and PhysioNet (medicine), Brazilian Weather (climate), WTI and Electricity (economics), and Traffic (smart cities). The results of each experiment conducted objectively demonstrate, rigorously following the experimentation presented in the original papers that addressed these problems, that our method is more competitive than other state-of-the-art approaches, producing more accurate and efficient models.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Efficient Automated Deep Learning for Time Series Forecasting
    Deng, Difan
    Karl, Florian
    Hutter, Frank
    Bischl, Bernd
    Lindauer, Marius
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 664 - 680
  • [2] A scalable approach based on deep learning for big data time series forecasting
    Torres, J. F.
    Galicia, A.
    Troncoso, A.
    Martinez-Alvarez, F.
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2018, 25 (04) : 335 - 348
  • [3] Deep learning-based time series forecasting
    Song, Xiaobao
    Deng, Liwei
    Wang, Hao
    Zhang, Yaoan
    He, Yuxin
    Cao, Wenming
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (01)
  • [4] Deep learning for time series forecasting: a survey
    Kong, Xiangjie
    Chen, Zhenghao
    Liu, Weiyao
    Ning, Kaili
    Zhang, Lechao
    Muhammad Marier, Syauqie
    Liu, Yichen
    Chen, Yuhao
    Xia, Feng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025,
  • [5] Deep Learning for Time Series Forecasting: A Survey
    Torres, Jose F.
    Hadjout, Dalil
    Sebaa, Abderrazak
    Martinez-Alvarez, Francisco
    Troncoso, Alicia
    BIG DATA, 2021, 9 (01) : 3 - 21
  • [6] Transformer-based deep learning architecture for time series forecasting
    Nayak, G. H. Harish
    Alam, Md Wasi
    Avinash, G.
    Kumar, Rajeev Ranjan
    Ray, Mrinmoy
    Barman, Samir
    Singh, K. N.
    Naik, B. Samuel
    Alam, Nurnabi Meherul
    Pal, Prasenjit
    Rathod, Santosha
    Bisen, Jaiprakash
    SOFTWARE IMPACTS, 2024, 22
  • [7] Chaos theory meets deep learning: A new approach to time series forecasting
    Jia, Bowen
    Wu, Huyu
    Guo, Kaiyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [8] Ensemble Deep Learning for Regression and Time Series Forecasting
    Qiu, Xueheng
    Zhang, Le
    Ren, Ye
    Suganthan, P. N.
    Amaratunga, Gehan
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ENSEMBLE LEARNING (CIEL), 2014, : 21 - 26
  • [9] Time-series forecasting with deep learning: a survey
    Lim, Bryan
    Zohren, Stefan
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [10] Deep Learning Models for Time Series Forecasting: A Review
    Li, Wenxiang
    Law, K. L. Eddie
    IEEE ACCESS, 2024, 12 : 92306 - 92327