Real-time augmentation of diagnostic nasal endoscopy video using AI-enabled edge computing

被引:0
作者
Bidwell, Jonathan [1 ]
Gyawali, Dipesh [1 ]
Morse, Jonathan [1 ]
Ganeshan, Vinayak [1 ]
Nguyen, Thinh [1 ]
Mccoul, Edward D. [1 ,2 ]
机构
[1] Ochsner Hlth, Dept Otorhinolaryngol, New Orleans, LA USA
[2] Univ Queensland, Ochsner Clin Sch, New Orleans, LA USA
关键词
artificial intelligence; deep learning; machine learning; nasal endoscopy; neural network;
D O I
10.1002/alr.23458
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
Key points: AI-enabled augmentation of nasal endoscopy video images is feasible in the clinical setting. Edge computing hardware can interface with existing nasal endoscopy equipment. Real-time AI performance can achieve an acceptable balance of accuracy and efficiency. © 2024 The Author(s). International Forum of Allergy & Rhinology published by Wiley Periodicals LLC on behalf of American Academy of Otolaryngic Allergy and American Rhinologic Society.
引用
收藏
页码:191 / 194
页数:4
相关论文
共 10 条
  • [1] Deep Learning With Edge Computing: A Review
    Chen, Jiasi
    Ran, Xukan
    [J]. PROCEEDINGS OF THE IEEE, 2019, 107 (08) : 1655 - 1674
  • [2] Enhancing nasal endoscopy: Classification, detection, and segmentation of anatomic landmarks using a convolutional neural network
    Ganeshan, Vinayak
    Bidwell, Jonathan
    Gyawali, Dipesh
    Nguyen, Thinh S.
    Morse, Jonathan
    Smith, Madeline P.
    Barton, Blair M.
    Mccoul, Edward D.
    [J]. INTERNATIONAL FORUM OF ALLERGY & RHINOLOGY, 2024, 14 (09) : 1521 - 1524
  • [3] Feasibility of a deep learning-based algorithm for automated detection and classification of nasal polyps and inverted papillomas on nasal endoscopic images
    Girdler, Benton
    Moon, Hyun
    Bae, Mi Rye
    Ryu, Sung Seok
    Bae, Jihye
    Yu, Myeong Sang
    [J]. INTERNATIONAL FORUM OF ALLERGY & RHINOLOGY, 2021, 11 (12) : 1637 - 1646
  • [4] Learning with limited annotations: A survey on deep semi-supervised learning for medical image segmentation
    Jiao, Rushi
    Zhang, Yichi
    Ding, Le
    Xue, Bingsen
    Zhang, Jicong
    Cai, Rong
    Jin, Cheng
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [5] Jocher G., 2023, YOLO ULTRALYTICS
  • [6] Kennedy DW, 2006, ANN OTO RHINOL LARYN, V115, P3
  • [7] Oppenheim MI, 2002, AMIA 2002 SYMPOSIUM, PROCEEDINGS, P577
  • [8] Machine Learning in Medicine
    Rajkomar, Alvin
    Dean, Jeffrey
    Kohane, Isaac
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (14) : 1347 - 1358
  • [9] Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
    Taha, Abdel Aziz
    Hanbury, Allan
    [J]. BMC MEDICAL IMAGING, 2015, 15
  • [10] Preoperative prediction of sinonasal papilloma by artificial intelligence using nasal video endoscopy: a retrospective study
    Yui, Ryosuke
    Takahashi, Masahiro
    Noda, Katsuhiko
    Yoshida, Kaname
    Sakurai, Rinko
    Ohira, Shinya
    Omura, Kazuhiro
    Otori, Nobuyoshi
    Wada, Kota
    Kojima, Hiromi
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)