Cofiniteness of generalized local cohomology modules over local rings

被引:0
作者
Tri, Nguyen Minh [1 ,2 ]
机构
[1] Univ Informat Technol, Dept Math & Phys, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
关键词
Bass numbers; cofinite; generalized local cohomology; minimax; BASS NUMBERS; FINITENESS PROPERTIES; DUALITY; IDEALS;
D O I
10.1142/S0219498825503682
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (R, m) be a local commutative Noetherian ring and I an ideal of R. Assume that M is a finitely generated R-module of finite projective dimension p and N is a finitely generated R-module of dimension d. We prove that H-m(1)(H-I(p+d-1)(M,N)) is Artinian. Moreover, if Hom(R)(R/I,H-I(p+d-1)(M,N) is finitely generated, then H-I(p+d-1)(M,N) is an I-cofinite R-module.
引用
收藏
页数:14
相关论文
共 30 条
  • [1] ON THE FINITENESS OF BASS NUMBERS OF LOCAL COHOMOLOGY MODULES
    Abazari, Nemat
    Bahmanpour, Kamal
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (04) : 783 - 791
  • [2] Aghapournahr M, 2020, B BELG MATH SOC-SIM, V27, P521
  • [3] A Unified Approach to Local Cohomology Modules using Serre Classes
    Asgharzadeh, Mohsen
    Tousi, Massoud
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (04): : 577 - 586
  • [4] Azami J, 2009, P AM MATH SOC, V137, P439
  • [5] Cofiniteness of local cohomology modules over Noetherian local rings
    Bagheriyeh, Iraj
    A'zami, Jafar
    Bahmanpour, Kamal
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (05) : 715 - 724
  • [6] Bahmanpour K, 2014, HOUSTON J MATH, V40, P319
  • [7] ON THE CATEGORY OF COFINITE MODULES WHICH IS ABELIAN
    Bahmanpour, Kamal
    Naghipour, Reza
    Sedghi, Monireh
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (04) : 1101 - 1107
  • [8] Cofiniteness of local cohomology modules for ideals of small dimension
    Bahmanpour, Kamal
    Naghipour, Reza
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (07) : 1997 - 2021
  • [9] BIJANZADEH MH, 1980, GLASGOW MATH J, V21, P173, DOI 10.1017/S0017089500004158
  • [10] Bourbaki N., 1961, Algebre commutative