Enhancing Collaborative Features with Knowledge Graph for Recommendation

被引:0
|
作者
Zhu, Lingang [1 ]
Zhang, Yi [1 ]
Li, Gang [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China
来源
关键词
Knowledge Graph; Recommendation; Collaborative Filtering; Graph Neural Networks;
D O I
10.1007/978-981-97-2387-4_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Graph (KG) is of great help in improving the performance of recommendation systems. Graph neural networks (GNNs) based model has gradually become the mainstream of knowledge-aware recommendation (KGR). However, existing GNN-based KGR models underutilize the semantic information in KG to enhance collaborative features. Therefore, we propose a Collaborative Knowledge Graph-Aware framework (CKGA). In general, we first use the knowledge graph to obtain the semantic representation of items and users, and then feed these representations into the Collaborative Filtering (CF) model to obtain better collaborative features. Specifically, (1) we design a novel CF model to learn the collaborative features of items and users, which partitions the interaction graph into different subgraphs of similar interest and performs high-order graph convolution inside subgraphs. (2) For learning important semantic information in KG, we design an attribute aggregation scheme and an inference mechanism for GNN which directly propagates further attributes and inference information to the central node. Extensive experiments conducted on three public datasets demonstrate the superior performance of CKGA over the state-of-the-arts.
引用
收藏
页码:188 / 203
页数:16
相关论文
共 50 条
  • [21] KNOWLEDGE RECOMMENDATION SYSTEM FOR HUMAN-ROBOT COLLABORATIVE DISASSEMBLY USING KNOWLEDGE GRAPH
    Hu, Yang
    Ding, Yiwen
    Xu, Feng
    Liu, Jiayi
    Xu, Wenjun
    Feng, Hao
    PROCEEDINGS OF THE ASME 2021 16TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2021), VOL 2, 2021,
  • [22] Entity-aware Collaborative Relation Network with Knowledge Graph for Recommendation
    Huang, Ruoran
    Han, Chuanqi
    Cui, Li
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3098 - 3102
  • [23] Neural Collaborative Recommendation Algorithm Based on Attention Mechanism and Knowledge Graph
    Zhang, Chuang
    Wang, Wei
    Du, Yuxuan
    Zheng, Xiaoli
    He, Tingting
    Computer Engineering and Applications, 2023, 59 (22) : 111 - 120
  • [24] Jointly Learning Propagating Features on the Knowledge Graph for Movie Recommendation
    Liu, Yun
    Miyazaki, Jun
    Chang, Qiong
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT I, 2022, 13426 : 3 - 16
  • [25] Enhancing recommendations with contrastive learning from collaborative knowledge graph
    Ma, Yubin
    Zhang, Xuan
    Gao, Chen
    Tang, Yahui
    Li, Linyu
    Zhu, Rui
    Yin, Chunlin
    NEUROCOMPUTING, 2023, 523 : 103 - 115
  • [26] Enhancing knowledge graph embedding with structure and semantic features
    Wang, Yalin
    Peng, Yubin
    Guo, Jingyu
    APPLIED INTELLIGENCE, 2024, 54 (03) : 2900 - 2914
  • [27] Enhancing knowledge graph embedding with structure and semantic features
    Yalin Wang
    Yubin Peng
    Jingyu Guo
    Applied Intelligence, 2024, 54 : 2900 - 2914
  • [28] Hybrid collaborative recommendation of co-embedded item attributes and graph features
    Dong, Bingbing
    Zhu, Yi
    Li, Lei
    Wu, Xindong
    NEUROCOMPUTING, 2021, 442 : 307 - 316
  • [29] Hybrid collaborative recommendation of co-embedded item attributes and graph features
    Dong, Bingbing
    Zhu, Yi
    Li, Lei
    Wu, Xindong
    Neurocomputing, 2021, 442 : 307 - 316
  • [30] XMKR: Explainable manufacturing knowledge recommendation for collaborative design with graph embedding learning
    Jing, Yanzhen
    Zhou, Guanghui
    Zhang, Chao
    Chang, Fengtian
    Yan, Hairui
    Xiao, Zhongdong
    ADVANCED ENGINEERING INFORMATICS, 2024, 59