THE GEOMETRY OF DOMAINS WITH NEGATIVELY PINCHED KAHLER METRICS
被引:0
|
作者:
Bracci, Filippo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Della Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Della Ric Sci 1, I-00133 Rome, Italy
Bracci, Filippo
[1
]
Gaussier, Herve
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, CNRS, IF, F-38000 Grenoble, FranceUniv Roma Tor Vergata, Dipartimento Matemat, Via Della Ric Sci 1, I-00133 Rome, Italy
Gaussier, Herve
[2
]
Zimmer, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA USA
Univ Wisconsin, Dept Math, Madison, WI USAUniv Roma Tor Vergata, Dipartimento Matemat, Via Della Ric Sci 1, I-00133 Rome, Italy
Zimmer, Andrew
[3
,4
]
机构:
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Della Ric Sci 1, I-00133 Rome, Italy
[2] Univ Grenoble Alpes, CNRS, IF, F-38000 Grenoble, France
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA USA
We study how the existence of a negatively pinched Ka<spacing diaeresis>hler metric on a domain in complex Euclidean space restricts the geometry of its boundary. In particular, we show that if a convex domain admits a complete Ka<spacing diaeresis>hler metric, with pinched negative holomorphic bisectional curvature outside a compact set, then the boundary of the domain does not contain any complex subvariety of positive dimension. Moreover, if the boundary of the domain is smooth, then it is of finite type in the sense of D'Angelo. We also use curvature to provide a characterization of strong pseudoconvexity amongst convex domains. In particular, we show that a convex domain with C-2,C-alpha boundary is strongly pseudoconvex if and only if it admits a complete Ka<spacing diaeresis>hler metric with sufficiently tight pinched negative holomorphic sectional curvature outside a compact set.
机构:
SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
Purdue Univ, Dept Math, W Lafayette, IN 47907 USASUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA