THE GEOMETRY OF DOMAINS WITH NEGATIVELY PINCHED KAHLER METRICS

被引:0
|
作者
Bracci, Filippo [1 ]
Gaussier, Herve [2 ]
Zimmer, Andrew [3 ,4 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Della Ric Sci 1, I-00133 Rome, Italy
[2] Univ Grenoble Alpes, CNRS, IF, F-38000 Grenoble, France
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA USA
[4] Univ Wisconsin, Dept Math, Madison, WI USA
基金
美国国家科学基金会;
关键词
CONVEX DOMAINS; COMPLEX-GEOMETRY; NEUMANN PROBLEM; CURVATURE; MANIFOLDS; BOUNDARY; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study how the existence of a negatively pinched Ka<spacing diaeresis>hler metric on a domain in complex Euclidean space restricts the geometry of its boundary. In particular, we show that if a convex domain admits a complete Ka<spacing diaeresis>hler metric, with pinched negative holomorphic bisectional curvature outside a compact set, then the boundary of the domain does not contain any complex subvariety of positive dimension. Moreover, if the boundary of the domain is smooth, then it is of finite type in the sense of D'Angelo. We also use curvature to provide a characterization of strong pseudoconvexity amongst convex domains. In particular, we show that a convex domain with C-2,C-alpha boundary is strongly pseudoconvex if and only if it admits a complete Ka<spacing diaeresis>hler metric with sufficiently tight pinched negative holomorphic sectional curvature outside a compact set.
引用
收藏
页码:909 / 938
页数:30
相关论文
共 50 条