We prove the asymptotic stability of a finite sum of well-ordered solitary waves for the Zakharov-Kuznetsov equation in dimensions two and three. We also derive a qualitative version of the orbital stability result, which will be useful for studying the collision of two solitary waves in a forthcoming paper. The proof extends the ideas of Martel, Merle and Tsai for the sub-critical gKdV equation in dimension one to the higher-dimensional case. It relies on monotonicity properties on oblique half-spaces and rigidity properties around one solitary wave introduced by C & ocirc;te, Mu & ntilde;oz, Pilod and Simpson in dimension two, and by Farah, Holmer, Roudenko and Yang in dimension three.
机构:
Univ Fed Pernambuco, Dept Matemat, Cidade Univ S-N, BR-50740545 Recife, PE, BrazilUniv Fed Pernambuco, Dept Matemat, Cidade Univ S-N, BR-50740545 Recife, PE, Brazil
Capistrano-Filho, Roberto de A.
Komornik, Vilmos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Dept Math, 7 Rue Rene Descartes, F-67084 Strasbourg, FranceUniv Fed Pernambuco, Dept Matemat, Cidade Univ S-N, BR-50740545 Recife, PE, Brazil
Komornik, Vilmos
Pazoto, Ademir F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio De Janeiro, Inst Matemat, Cidade Univ Ilha do Fundao, BR-21945970 Rio De Janeiro, RJ, BrazilUniv Fed Pernambuco, Dept Matemat, Cidade Univ S-N, BR-50740545 Recife, PE, Brazil
Pazoto, Ademir F.
APPLIED MATHEMATICS AND OPTIMIZATION,
2025,
91
(02):
机构:
Taibah Univ, Fac Sci & Arts, Dept Math, Al Ula, Saudi Arabia
Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, EgyptTaibah Univ, Fac Sci & Arts, Dept Math, Al Ula, Saudi Arabia