Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives

被引:66
作者
Jin, Kai [1 ]
Ye, Juan [1 ]
机构
[1] Zhejiang Univ, Dept Ophthalmol, Affiliated Hosp 2, Sch Med, Hangzhou, Peoples R China
来源
ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH | 2022年 / 2卷 / 03期
关键词
Artificial intelligence; Deep learning; Ophthalmology; Diabetic retinopathy; Glaucoma; Age-related macular degeneration; OPTICAL COHERENCE TOMOGRAPHY; DIABETIC-RETINOPATHY; MACULAR DEGENERATION; AUTOMATED IDENTIFICATION; QUANTIFICATION; VALIDATION; PREDICTION; IMAGES; DISEASES; PROGRAM;
D O I
10.1016/j.aopr.2022.100078
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background: The ophthalmology field was among the first to adopt artificial intelligence (AI) in medicine. The availability of digitized ocular images and substantial data have made deep learning (DL) a popular topic. Main text: At the moment, AI in ophthalmology is mostly used to improve disease diagnosis and assist decisionmaking aiming at ophthalmic diseases like diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD), cataract and other anterior segment diseases. However, most of the AI systems developed to date are still in the experimental stages, with only a few having achieved clinical applications. There are a number of reasons for this phenomenon, including security, privacy, poor pervasiveness, trust and explainability concerns. Conclusions: This review summarizes AI applications in ophthalmology, highlighting significant clinical considerations for adopting AI techniques and discussing the potential challenges and future directions.
引用
收藏
页数:7
相关论文
共 80 条
[1]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[2]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[3]   Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images [J].
Asaoka, Ryo ;
Murata, Hiroshi ;
Hirasawa, Kazunori ;
Fujino, Yuri ;
Matsuura, Masato ;
Miki, Atsuya ;
Kanamoto, Takashi ;
Ikeda, Yoko ;
Mori, Kazuhiko ;
Iwase, Aiko ;
Shoji, Nobuyuki ;
Inoue, Kenji ;
Yamagami, Junkichi ;
Araie, Makoto .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 198 :136-145
[4]   Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study [J].
Bellemo, Valentina ;
Lim, Zhan W. ;
Lim, Gilbert ;
Nguyen, Quang D. ;
Xie, Yuchen ;
Yip, Michelle Y. T. ;
Hamzah, Haslina ;
Ho, Jinyi ;
Lee, Xin Q. ;
Hsu, Wynne ;
Lee, Mong L. ;
Musonda, Lillian ;
Chandran, Manju ;
Chipalo-Mutati, Grace ;
Muma, Mulenga ;
Tan, Gavin S. W. ;
Sivaprasad, Sobha ;
Menon, Geeta ;
Wong, Tien Y. ;
Ting, Daniel S. W. .
LANCET DIGITAL HEALTH, 2019, 1 (01) :E35-E44
[5]   Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging [J].
Bogunovic, Hrvoje ;
Montuoro, Alessio ;
Baratsits, Magdalena ;
Karantonis, Maria G. ;
Waldstein, Sebastian M. ;
Schlanitz, Ferdinand ;
Schmidt-Erfurth, Ursula .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (06) :BIO141-BIO150
[6]   Optical coherence tomography machine learning classifiers for glaucoma detection: A preliminary study [J].
Burgansky-Eliash, Z ;
Wollstein, G ;
Chu, TJ ;
Ramsey, JD ;
Glymour, C ;
Noecker, RJ ;
Ishikawa, H ;
Schuman, JS .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46 (11) :4147-4152
[7]   Detecting Anomalies in Retinal Diseases Using Generative, Discriminative, and Self-supervised Deep Learning [J].
Burlina, Philippe ;
Paul, William ;
Liu, T. Y. Alvin ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2022, 140 (02) :185-189
[8]   Low-Shot Deep Learning of Diabetic Retinopathy With Potential Applications to Address Artificial Intelligence Bias in Retinal Diagnostics and Rare Ophthalmic Diseases [J].
Burlina, Philippe ;
Paul, William ;
Mathew, Philip ;
Joshi, Neil ;
Pacheco, Katia D. ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2020, 138 (10) :1070-1077
[9]   Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients With Age-Related Macular Degeneration [J].
Burlina, Philippe M. ;
Joshi, Neil ;
Pacheco, Katia D. ;
Freund, David E. ;
Kong, Jun ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2018, 136 (12) :1359-1366
[10]   Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks [J].
Burlina, Philippe M. ;
Joshi, Neil ;
Pekala, Michael ;
Pacheco, Katia D. ;
Freund, David E. ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2017, 135 (11) :1170-1176