Retrieval of moisture content of common Sphagnum peat moss species from hyperspectral and multispectral data

被引:2
作者
Karlqvist, Susanna [1 ]
Burdun, Iuliia [1 ]
Salko, Sini-Selina [1 ]
Juola, Jussi [1 ]
Rautiainen, Miina [1 ]
机构
[1] Aalto Univ, Sch Engn, POB 14100, FI-00076 Aalto, Finland
基金
欧洲研究理事会;
关键词
Peatland; Hyperspectral; Multispectral; Spectral index; Optical trapezoid model (OPTRAM); Continuous wavelet transform (CWT); CANOPY WATER-CONTENT; SPECTRAL INDEXES; REFLECTANCE; TABLE; PEATLANDS; STRESS; FLUXES; MODEL;
D O I
10.1016/j.rse.2024.114415
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Peatlands store enormous amounts of carbon in a peat layer, the formation and preservation of which can only occur under waterlogged conditions. Monitoring peatland moisture conditions is critically important because a decrease in moisture leads to peat oxidation and the release of accumulated carbon back into the atmosphere as a greenhouse gas. Optical remote sensing enables the indirect monitoring of peatland moisture conditions by identifying moisture-driven changes in vegetation spectral signatures. The vegetation of northern peatlands is dominated by Sphagnum mosses, whose spectral signatures are known to be highly sensitive to changes in moisture content. In this study, we tested methods to estimate Sphagnum moisture content from spectral data using seven spectral moisture indices, the OPtical TRApezoid Model (OPTRAM) and the Continuous Wavelet Transform (CWT). This study was based on data representing nine Sphagnum species sampled from two habitats in southern boreal peatlands in Finland. Our results showed that both multi- and hyperspectral data can be used to estimate the moisture content of Sphagnum mosses. Nevertheless, the optimal retrieval method depended on habitat characteristics. Using hyperspectral data, we found that: (i) the CWT exhibited superior performance for all studied moss species (R-Marg(2)= 0.72, ICC = 0.40), (ii) the exponential OPTRAM performed best for the mesotrophic species (R-Marg(2)= 0.70, ICC = 0.08), and (iii) the Modified Moisture Stress Index (MMSI) yielded the best results (R-Marg(2)= 0.68, ICC = 0.55) for the ombrotrophic species. Furthermore, we demonstrated that using multispectral data instead of hyperspectral data provides comparable results in moisture estimation when used as input with OPTRAM or Moisture Stress Index (MSI). This approach could lead to new insights into the moisture dynamics in Sphagnum-dominated peatlands over the span of the multispectral satellite era.
引用
收藏
页数:13
相关论文
共 60 条
[1]   Soil Moisture Mapping with Moisture-Related Indices, OPTRAM, and an Integrated Random Forest-OPTRAM Algorithm from Landsat 8 Images [J].
Acharya, Umesh ;
Daigh, Aaron L. M. ;
Oduor, Peter G. .
REMOTE SENSING, 2022, 14 (15)
[2]   Retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach [J].
Ambrosone, Mariapaola ;
Matese, Alessandro ;
Di Gennaro, Salvatore Filippo ;
Gioli, Beniamino ;
Tudoroiu, Marin ;
Genesio, Lorenzo ;
Miglietta, Franco ;
Baronti, Silvia ;
Maienza, Anita ;
Ungaro, Fabrizio ;
Toscano, Piero .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 89
[3]   Advancing peatland vegetation mapping by spaceborne imaging spectroscopy [J].
Arasumani, M. ;
Thiel, Fabian ;
Pham, Vu-Dong ;
Hellmann, Christina ;
Kaiser, Moritz ;
van der Linden, Sebastian .
ECOLOGICAL INDICATORS, 2023, 154
[4]  
Arkimaa H., 2009, 6 EARSEL SIG IS WORK, P16
[5]   Continuous Wavelet Analysis for Spectroscopic Determination of Subsurface Moisture and Water-Table Height in Northern Peatland Ecosystems [J].
Banskota, Asim ;
Falkowski, Michael J. ;
Smith, Alistair M. S. ;
Kane, Evan S. ;
Meingast, Karl M. ;
Bourgeau-Chavez, Laura L. ;
Miller, Mary Ellen ;
French, Nancy H. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (03) :1526-1536
[6]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[7]   Mapping boreal peatland ecosystem types from multitemporal radar and optical satellite imagery [J].
Bourgeau-Chavez, L. L. ;
Endres, S. ;
Powell, R. ;
Battaglia, M. J. ;
Benscoter, B. ;
Turetsky, M. ;
Kasischke, E. S. ;
Banda, E. .
CANADIAN JOURNAL OF FOREST RESEARCH, 2017, 47 (04) :545-559
[8]   Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms [J].
Bruce, LM ;
Morgan, C ;
Larsen, S .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (10) :2217-2226
[9]   The spectral behaviour of Sphagnum canopies under varying hydrological conditions -: art. no. 1134 [J].
Bryant, RG ;
Baird, AJ .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (03) :34-1
[10]   Hidden becomes clear: Optical remote sensing of vegetation reveals water table dynamics in northern peatlands [J].
Burdun, Iuliia ;
Bechtold, Michel ;
Aurela, Mika ;
De Lannoy, Gabrielle ;
Desai, Ankur R. ;
Humphreys, Elyn ;
Kareksela, Santtu ;
Komisarenko, Viacheslav ;
Liimatainen, Maarit ;
Marttila, Hannu ;
Minkkinen, Kari ;
Nilsson, Mats B. ;
Ojanen, Paavo ;
Salko, Sini-Selina ;
Tuittila, Eeva-Stiina ;
Uuemaa, Evelyn ;
Rautiainen, Miina .
REMOTE SENSING OF ENVIRONMENT, 2023, 296