Global-Local Features Reconstruction Network for FDD Massive MIMO CSI Feedback

被引:0
作者
Tan, Yuyang [1 ,2 ]
Tan, Weiqiang [1 ]
Guo, Jiajia [3 ,4 ]
Shi, Zheng [5 ,6 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510006, Peoples R China
[2] Guizhou Univ, State Key Lab Publ Big Data, Guiyang, Peoples R China
[3] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Macau, Peoples R China
[4] Zhuhai UM Sci & Technol Res Inst, Zhuhai 519072, Peoples R China
[5] Jinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R China
[6] Jinan Univ, GBA & B&R Int Joint Res Ctr Smart Logist, Zhuhai 519070, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Decoding; Convolution; Logic gates; Data mining; Vectors; Downlink; Massive MIMO; CSI feedback; deep learning; global-local features;
D O I
10.1109/LWC.2024.3411065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The channel state information (CSI) plays a pivotal role in realizing precoding design and signal detection for multiple-input multiple-output (MIMO) systems. However, a large number of antennas in massive MIMO systems leads to a huge CSI matrix and impractical feedback overhead. To address this challenge, we propose a novel and efficient CSI feedback network termed Global-Local Feature Reconstruction CsiNet (GLCsiNet), where the network achieves multi-feature extraction of CSI by leveraging global and local feature extraction networks. In contrast to existing deep learning based methods, GLCsiNet integrates the advantageous aspects of recurrent neural networks and convolutional neural networks to more effectively exploit the global and local features of the CSI matrix. Simulation results demonstrate that the proposed GLCsiNet offers notable performance improvements with minimal computational complexity compared to the state-of-the-art method.
引用
收藏
页码:2255 / 2259
页数:5
相关论文
共 50 条
  • [31] Learning-Based Integrated CSI Feedback and Localization in Massive MIMO
    Guo, Jiajia
    Lv, Yan
    Wen, Chao-Kai
    Li, Xiao
    Jin, Shi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 14988 - 15001
  • [32] AI-enhanced Codebook-based CSI Feedback in FDD Massive MIMO
    Guo, Jiajia
    Wen, Chao-Kai
    Chen, Muhan
    Jin, Shi
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [33] Adaptive DNN-based CSI Feedback with Quantization for FDD Massive MIMO Systems
    Gao, Junjie
    Bouazizi, Mondher
    Ohtsuki, Tomoaki
    Gui, Guan
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [34] Binary Neural Network Aided CSI Feedback in Massive MIMO System
    Lu, Zhilin
    Wang, Jintao
    Song, Jian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (06) : 1305 - 1308
  • [35] A Novel Compression CSI Feedback based on Deep Learning for FDD Massive MIMO Systems
    Wang, Yuting
    Zhang, Yibin
    Sun, Jinlong
    Gui, Guan
    Ohtsuki, Tomoaki
    Adachi, Fumiyuki
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [36] A Scalable Framework for CSI Feedback in FDD Massive MIMO via DL Path Aligning
    Luo, Xiliang
    Cai, Penghao
    Zhang, Xiaoyu
    Hu, Die
    Shen, Cong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (18) : 4702 - 4716
  • [37] Deep Learning Based CSI Compression and Quantization With High Compression Ratios in FDD Massive MIMO Systems
    Zhang, Yangyang
    Zhang, Xichang
    Liu, Yi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (10) : 2101 - 2105
  • [38] Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 8017 - 8045
  • [39] Lightweight and Low Complexity CSI Feedback Method for FDD Massive MIMO Systems
    Liao Y.
    Li Y.-J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (05): : 1211 - 1217
  • [40] Adaptive Lightweight CNN-Based CSI Feedback for Massive MIMO Systems
    Jo, Sanguk
    So, Jaewoo
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (12) : 2776 - 2780