Global-Local Features Reconstruction Network for FDD Massive MIMO CSI Feedback

被引:0
|
作者
Tan, Yuyang [1 ,2 ]
Tan, Weiqiang [1 ]
Guo, Jiajia [3 ,4 ]
Shi, Zheng [5 ,6 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510006, Peoples R China
[2] Guizhou Univ, State Key Lab Publ Big Data, Guiyang, Peoples R China
[3] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Macau, Peoples R China
[4] Zhuhai UM Sci & Technol Res Inst, Zhuhai 519072, Peoples R China
[5] Jinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R China
[6] Jinan Univ, GBA & B&R Int Joint Res Ctr Smart Logist, Zhuhai 519070, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Decoding; Convolution; Logic gates; Data mining; Vectors; Downlink; Massive MIMO; CSI feedback; deep learning; global-local features;
D O I
10.1109/LWC.2024.3411065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The channel state information (CSI) plays a pivotal role in realizing precoding design and signal detection for multiple-input multiple-output (MIMO) systems. However, a large number of antennas in massive MIMO systems leads to a huge CSI matrix and impractical feedback overhead. To address this challenge, we propose a novel and efficient CSI feedback network termed Global-Local Feature Reconstruction CsiNet (GLCsiNet), where the network achieves multi-feature extraction of CSI by leveraging global and local feature extraction networks. In contrast to existing deep learning based methods, GLCsiNet integrates the advantageous aspects of recurrent neural networks and convolutional neural networks to more effectively exploit the global and local features of the CSI matrix. Simulation results demonstrate that the proposed GLCsiNet offers notable performance improvements with minimal computational complexity compared to the state-of-the-art method.
引用
收藏
页码:2255 / 2259
页数:5
相关论文
共 50 条
  • [21] Sparsity Learning-Based CSI Feedback for FDD Massive MIMO Systems
    Zeng, Wenbo
    He, Yigang
    Li, Bing
    Wang, Shudong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 585 - 588
  • [22] Massive MIMO CSI Feedback Based on Generative Adversarial Network
    Tolba, Bassant
    Elsabrouty, Maha
    Abdu-Aguye, Mubarak G.
    Gacanin, Haris
    Kasem, Hossam Mohamed
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (12) : 2805 - 2808
  • [23] CSI Feedback Method Based on Deep Learning for FDD Massive MIMO Systems
    Liao Y.
    Yao H.-M.
    Hua Y.-X.
    Zhao Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (06): : 1182 - 1189
  • [24] DL CSI Acquisition and Feedback in FDD Massive MIMO via Path Aligning
    Luo, Xiliang
    Zhang, Xiaoyu
    Cai, Penghao
    Shen, Cong
    Hu, Die
    Qian, Hua
    2017 NINTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2017), 2017, : 349 - 354
  • [25] High-Accuracy CSI Feedback With Super-Resolution Network for Massive MIMO Systems
    Chen, Xiaohong
    Deng, Changxing
    Zhou, Binggui
    Zhang, Huan
    Yang, Guanghua
    Ma, Shaodan
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (01) : 141 - 145
  • [26] Deep Learning and Compressive Sensing-Based CSI Feedback in FDD Massive MIMO Systems
    Liang, Peizhe
    Fan, Jiancun
    Shen, Wenhan
    Qin, Zhijin
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) : 9217 - 9222
  • [27] Compressive Sampled CSI Feedback Method Based on Deep Learning for FDD Massive MIMO Systems
    Wang, Jie
    Gui, Guan
    Ohtsuki, Tomoaki
    Adebisi, Bamidele
    Gacanin, Haris
    Sari, Hikmet
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (09) : 5873 - 5885
  • [28] DS-NLCsiNet: Exploiting Non-Local Neural Networks for Massive MIMO CSI Feedback
    Yu, Xiaotong
    Li, Xiangyi
    Wu, Huaming
    Bai, Yang
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (12) : 2790 - 2794
  • [29] MRFNet: A Deep Learning-Based CSI Feedback Approach of Massive MIMO Systems
    Hu, Zhengyang
    Guo, Jianhua
    Liu, Guanzhang
    Zheng, Hanying
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3310 - 3314
  • [30] Deep CSI Feedback for FDD MIMO Systems
    He, Zibo
    Zhao, Long
    Luo, Xiangchen
    Cheng, Binyao
    COMMUNICATIONS AND NETWORKING (CHINACOM 2021), 2022, : 366 - 376