Global-Local Features Reconstruction Network for FDD Massive MIMO CSI Feedback

被引:0
作者
Tan, Yuyang [1 ,2 ]
Tan, Weiqiang [1 ]
Guo, Jiajia [3 ,4 ]
Shi, Zheng [5 ,6 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510006, Peoples R China
[2] Guizhou Univ, State Key Lab Publ Big Data, Guiyang, Peoples R China
[3] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Macau, Peoples R China
[4] Zhuhai UM Sci & Technol Res Inst, Zhuhai 519072, Peoples R China
[5] Jinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R China
[6] Jinan Univ, GBA & B&R Int Joint Res Ctr Smart Logist, Zhuhai 519070, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Decoding; Convolution; Logic gates; Data mining; Vectors; Downlink; Massive MIMO; CSI feedback; deep learning; global-local features;
D O I
10.1109/LWC.2024.3411065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The channel state information (CSI) plays a pivotal role in realizing precoding design and signal detection for multiple-input multiple-output (MIMO) systems. However, a large number of antennas in massive MIMO systems leads to a huge CSI matrix and impractical feedback overhead. To address this challenge, we propose a novel and efficient CSI feedback network termed Global-Local Feature Reconstruction CsiNet (GLCsiNet), where the network achieves multi-feature extraction of CSI by leveraging global and local feature extraction networks. In contrast to existing deep learning based methods, GLCsiNet integrates the advantageous aspects of recurrent neural networks and convolutional neural networks to more effectively exploit the global and local features of the CSI matrix. Simulation results demonstrate that the proposed GLCsiNet offers notable performance improvements with minimal computational complexity compared to the state-of-the-art method.
引用
收藏
页码:2255 / 2259
页数:5
相关论文
共 16 条
[1]   Deep Decoder CsiNet for FDD Massive MIMO System [J].
Chakma, Arbil ;
Alam, Syed Samiul ;
Rahman, Md Habibur ;
Jang, Yeong Min .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (12) :2073-2077
[2]   Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks [J].
Chen, Jierun ;
Kao, Shiu-Hong ;
He, Hao ;
Zhuo, Weipeng ;
Wen, Song ;
Lee, Chul-Ho ;
Chan, S. -H. Gary .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :12021-12031
[3]  
Cho K., 2014, C EMP METH NAT LANG, P1724, DOI [10.3115/v1/d14-1179, DOI 10.3115/V1/D14-1179]
[4]   TransNet: Full Attention Network for CSI Feedback in FDD Massive MIMO System [J].
Cui, Yaodong ;
Guo, Aihuang ;
Song, Chunlin .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (05) :903-907
[5]   Fully Convolutional Neural Network-Based CSI Limited Feedback for FDD Massive MIMO Systems [J].
Fan, Guanghui ;
Sun, Jinlong ;
Gui, Guan ;
Gacanin, Haris ;
Adebisi, Bamidele ;
Ohtsuki, Tomoaki .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (02) :672-682
[6]   Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems [J].
Guo, Jiajia ;
Wen, Chao-Kai ;
Jin, Shi ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) :8017-8045
[7]  
Guo JJ, 2020, IEEE T WIREL COMMUN, V19, P2827, DOI [10.1109/TWC.2020.2968430, 10.1109/TNSE.2020.2997359]
[8]   Efficient Downlink Channel Reconstruction for FDD Multi-Antenna Systems [J].
Han, Yu ;
Hsu, Tien-Hao ;
Wen, Chao-Kai ;
Wong, Kai-Kit ;
Jin, Shi .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (06) :3161-3176
[9]   THE COST 2100 MIMO CHANNEL MODEL [J].
Liu, Lingfeng ;
Oestges, Claude ;
Poutanen, Juho ;
Haneda, Katsuyuki ;
Vainikainen, Pertti ;
Quitin, Francois ;
Tufvesson, Fredrik ;
De Doncker, Philippe .
IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) :92-99
[10]   Distributed Deep Convolutional Compression for Massive MIMO CSI Feedback [J].
Mashhadi, Mahdi Boloursaz ;
Yang, Qianqian ;
Gunduz, Deniz .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (04) :2621-2633