Global-Local Features Reconstruction Network for FDD Massive MIMO CSI Feedback

被引:0
|
作者
Tan, Yuyang [1 ,2 ]
Tan, Weiqiang [1 ]
Guo, Jiajia [3 ,4 ]
Shi, Zheng [5 ,6 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510006, Peoples R China
[2] Guizhou Univ, State Key Lab Publ Big Data, Guiyang, Peoples R China
[3] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Macau, Peoples R China
[4] Zhuhai UM Sci & Technol Res Inst, Zhuhai 519072, Peoples R China
[5] Jinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R China
[6] Jinan Univ, GBA & B&R Int Joint Res Ctr Smart Logist, Zhuhai 519070, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Decoding; Convolution; Logic gates; Data mining; Vectors; Downlink; Massive MIMO; CSI feedback; deep learning; global-local features;
D O I
10.1109/LWC.2024.3411065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The channel state information (CSI) plays a pivotal role in realizing precoding design and signal detection for multiple-input multiple-output (MIMO) systems. However, a large number of antennas in massive MIMO systems leads to a huge CSI matrix and impractical feedback overhead. To address this challenge, we propose a novel and efficient CSI feedback network termed Global-Local Feature Reconstruction CsiNet (GLCsiNet), where the network achieves multi-feature extraction of CSI by leveraging global and local feature extraction networks. In contrast to existing deep learning based methods, GLCsiNet integrates the advantageous aspects of recurrent neural networks and convolutional neural networks to more effectively exploit the global and local features of the CSI matrix. Simulation results demonstrate that the proposed GLCsiNet offers notable performance improvements with minimal computational complexity compared to the state-of-the-art method.
引用
收藏
页码:2255 / 2259
页数:5
相关论文
共 50 条
  • [1] TransNet: Full Attention Network for CSI Feedback in FDD Massive MIMO System
    Cui, Yaodong
    Guo, Aihuang
    Song, Chunlin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (05) : 903 - 907
  • [2] CovNet: Covariance Information-Assisted CSI Feedback for FDD Massive MIMO Systems
    Zhuang, Jialin
    He, Xuan
    Wang, Yafei
    Liu, Jiale
    Wang, Wenjin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 641 - 645
  • [3] Spatio-Temporal Focal Modulation Network for Massive MIMO CSI Feedback
    Shao, Hua
    Zhang, Xiao
    Zhang, Haijun
    Xu, Kexin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 5259 - 5263
  • [4] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [5] Disentangled Representation Learning Empowered CSI Feedback Using Implicit Channel Reciprocity in FDD Massive MIMO
    Xu, Wei
    Wu, Jie
    Jin, Shi
    You, Xiaohu
    Lu, Zhaohua
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 15169 - 15184
  • [6] A Manifold Learning-Based CSI Feedback Framework for FDD Massive MIMO
    Cao, Yandi
    Yin, Haifan
    Qin, Ziao
    Li, Weidong
    Wu, Weimin
    Debbah, Merouane
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (03) : 1833 - 1846
  • [7] Massive MIMO-FDD self-attention CSI feedback network for outdoor environments
    Wang, Linyu
    Cao, Yize
    Xiang, Jianhong
    Jiang, Hanyu
    Zhong, Yu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (6-7) : 5511 - 5518
  • [8] CSI Feedback Based on Complex Neural Network for Massive MIMO Systems
    Liu, Qingli
    Zhang, Zhenya
    Yang, Guoqiang
    Cao, Na
    Li, Mengqian
    IEEE ACCESS, 2022, 10 : 78414 - 78422
  • [9] A Lightweight Deep Network for Efficient CSI Feedback in Massive MIMO Systems
    Sun, Yuyao
    Xu, Wei
    Liang, Le
    Wang, Ning
    Li, Geoffery Ye
    You, Xiaohu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (08) : 1840 - 1844
  • [10] CLNet: Complex Input Lightweight Neural Network Designed for Massive MIMO CSI Feedback
    Ji, Sijie
    Li, Mo
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (10) : 2318 - 2322