COMPOSITION OPERATORS ON SOBOLEV SPACES AND WEIGHTED MODULI INEQUALITIES

被引:0
作者
Gol'dshtein, Vladimir [1 ]
Sevost'yanov, Evgeny [2 ,3 ]
Ukhlov, Alexander [1 ]
机构
[1] Ben Gurion Univ Negev, POB 653, IL-8410501 Beer Sheva, Israel
[2] Zhytomyr Ivan Franko State Univ, 40 Bolshaya Berdichevskaya Str, UA-10008 Zhytomyr, Ukraine
[3] NAS Ukraine, Inst Appl Math & Mech, 19 Henerala Batiuka Str, UA-84100 Sloviansk, Ukraine
来源
MATHEMATICAL REPORTS | 2024年 / 26卷 / 02期
关键词
Sobolev spaces; quasiconformal mappings; DISCRETE OPEN MAPPINGS; HOMEOMORPHISMS;
D O I
10.59277/mrar.2024.26.76.2.101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study connections between composition operators on Sobolev spaces and mappings defined by p-moduli inequalities (p-capacity inequalities). We prove that weighted moduli inequalities lead to composition operators on corresponding Sobolev spaces and conversely, that composition operators on Sobolev spaces imply weighted moduli inequalities.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 50 条
[41]   Lower estimates of the norms of extension operators for Sobolev spaces on the halfline [J].
Burenkov, VI ;
Kalyabin, GA .
MATHEMATISCHE NACHRICHTEN, 2000, 218 :19-23
[42]   Invariant Subspaces for Compact-Friendly Operators in Sobolev Spaces [J].
Maria Cristina Isidori ;
Anna Martellotti .
Positivity, 2004, 8 :109-122
[43]   Multipliers in dual Sobolev spaces and Schrodinger operators with distribution Potentials [J].
Bak, JG ;
Shkalikov, AA .
MATHEMATICAL NOTES, 2002, 71 (5-6) :587-594
[45]   Invariant subspaces for compact-friendly operators in Sobolev spaces [J].
Isidori, MC ;
Martellotti, A .
POSITIVITY, 2004, 8 (02) :109-122
[46]   Dirac-Sobolev Spaces and Sobolev Spaces [J].
Ichinose, Takashi ;
Saito, Yoshimi .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (02) :291-310
[47]   Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents [J].
Mitsuo Izuki ;
Toru Nogayama ;
Takahiro Noi ;
Yoshihiro Sawano .
Constructive Approximation, 2023, 57 :161-234
[48]   Weierstrass' theorem in weighted Sobolev spaces with K derivatives:: Announcement of results [J].
Portilla, Ana ;
Quintana, Yamilet ;
Rodriguez, Jose M. ;
Touris, Eva .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 24 :103-107
[49]   Embeddings of weighted Sobolev spaces and degenerate Dirichlet problems involving the weighted p-Laplacian [J].
Gol'dshtein, V. ;
Motreanu, V. V. ;
Ukhlov, A. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (10-11) :905-930
[50]   Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents [J].
Izuki, Mitsuo ;
Nogayama, Toru ;
Noi, Takahiro ;
Sawano, Yoshihiro .
CONSTRUCTIVE APPROXIMATION, 2023, 57 (01) :161-234