COMPOSITION OPERATORS ON SOBOLEV SPACES AND WEIGHTED MODULI INEQUALITIES

被引:0
作者
Gol'dshtein, Vladimir [1 ]
Sevost'yanov, Evgeny [2 ,3 ]
Ukhlov, Alexander [1 ]
机构
[1] Ben Gurion Univ Negev, POB 653, IL-8410501 Beer Sheva, Israel
[2] Zhytomyr Ivan Franko State Univ, 40 Bolshaya Berdichevskaya Str, UA-10008 Zhytomyr, Ukraine
[3] NAS Ukraine, Inst Appl Math & Mech, 19 Henerala Batiuka Str, UA-84100 Sloviansk, Ukraine
来源
MATHEMATICAL REPORTS | 2024年 / 26卷 / 02期
关键词
Sobolev spaces; quasiconformal mappings; DISCRETE OPEN MAPPINGS; HOMEOMORPHISMS;
D O I
10.59277/mrar.2024.26.76.2.101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study connections between composition operators on Sobolev spaces and mappings defined by p-moduli inequalities (p-capacity inequalities). We prove that weighted moduli inequalities lead to composition operators on corresponding Sobolev spaces and conversely, that composition operators on Sobolev spaces imply weighted moduli inequalities.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 50 条
[31]   Approximation results in Sobolev and fractional Sobolev spaces by sampling Kantorovich operators [J].
Marco Cantarini ;
Danilo Costarelli ;
Gianluca Vinti .
Fractional Calculus and Applied Analysis, 2023, 26 :2493-2521
[32]   ON THE CONTINUITY OF DISCRETE MAXIMAL OPERATORS IN SOBOLEV SPACES [J].
Luiro, Hannes ;
Nuutinen, Juho .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) :175-185
[34]   Weighted LP-boundedness of convolution type integral operators associated with bilinear estimates in the Sobolev spaces [J].
Fujiwara, Kazumasa ;
Ozawa, Tohru .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (01) :169-191
[35]   On mappings generating embedding operators in Sobolev classes on metric measure spaces [J].
Menovschikov, Alexander ;
Ukhlov, Alexander .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 551 (02)
[36]   NEMYTZKIJ OPERATORS ON SOBOLEV SPACES WITH POWER WEIGHTS: I [J].
Drihem D. .
Journal of Mathematical Sciences, 2022, 266 (3) :395-406
[37]   Composition operator and Sobolev-Lorentz spaces [J].
Hencl, Stanislav ;
Kleprlik, Ludek ;
Maly, Jan .
STUDIA MATHEMATICA, 2014, 221 (03) :197-208
[38]   Sharp Sobolev and Adams-Trudinger-Moser embeddings on weighted Sobolev spaces and their applications [J].
do O, Joao Marcos ;
Lu, Guozhen ;
Ponciano, Raoni .
FORUM MATHEMATICUM, 2024, 36 (05) :1279-1320
[39]   Mixed Sobolev-like inequalities in Lebesgue spaces of variable exponents and in Orlicz spaces [J].
Chamorro, Diego .
POSITIVITY, 2022, 26 (01)
[40]   Mixed Sobolev-like inequalities in Lebesgue spaces of variable exponents and in Orlicz spaces [J].
Diego Chamorro .
Positivity, 2022, 26