A Labeled Multi-Bernoulli Filter Based on Maximum Likelihood Recursive Updating

被引:0
作者
Song, Yuhan [1 ]
Han, Shen-Tu [1 ]
Lin, Junhao [1 ]
Wei, Yizhen [2 ]
Guo, Yunfei [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Informat & Control, Hangzhou 310018, Peoples R China
[2] Hangzhou Guangli Technol, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
MULTISENSOR MULTIOBJECT TRACKING; PROBABILISTIC DATA ASSOCIATION; RANDOM FINITE SETS; MULTITARGET TRACKING; IMPLEMENTATION; DERIVATION; ALGORITHM; ORDER; PHD;
D O I
10.1049/2024/1994552
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A labeled multi-Bernoulli filter is used to obtain estimates of the identities and states of targets in complex environments. However, when tracking multiple targets in dense clutters, the computational complexity of the traditional labeled multi-Bernoulli filter will increase exponentially. A labeled multi-Bernoulli tracking algorithm based on maximum likelihood recursive update is proposed, which can reduce the computational scale while maintaining tracking accuracy. Specifically, when performing posterior estimation, a maximum likelihood recursive update method is proposed to replace the complete enumeration, truncated enumeration, or sampling enumeration methods used in many traditional methods. Furthermore, combined with the Gaussian mixture technique, a maximum likelihood recursive updating labeled multi-Bernoulli tracking algorithm is constructed. Simulation results demonstrated that the proposed filter obtained a good balance between the tracking accuracy and computational efficiency.
引用
收藏
页数:19
相关论文
共 55 条
[1]   A Sequential Target Existence Statistic for Joint Probabilistic Data Association [J].
Ainsleigh, Phillip L. ;
Luginbuhl, Tod E. ;
Willett, Peter K. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (01) :371-381
[2]   Multi-Sensor Multi-Object Tracking With the Generalized Labeled Multi-Bernoulli Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Beard, Michael .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (23) :5952-5967
[3]   An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Hung Gia Hoang .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) :1975-1987
[4]   Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Dinh Phung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) :6554-6567
[5]   Labeled Random Finite Sets and Multi-Object Conjugate Priors [J].
Ba-Tuong Vo ;
Ba-Ngu Vo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) :3460-3475
[6]  
Bach M, 2017, IEEE INT VEH SYM, P1045, DOI 10.1109/IVS.2017.7995852
[7]  
BAR-SHALoM Y., 1988, Tracking and Data Association
[8]   TRACKING IN A CLUTTERED ENVIRONMENT WITH PROBABILISTIC DATA ASSOCIATION [J].
BARSHALOM, Y ;
TSE, E .
AUTOMATICA, 1975, 11 (05) :451-460
[9]   Robust Multisensor Multitarget Tracker with Application to Passive Multistatic Radar Tracking [J].
Battistelli, G. ;
Chisci, L. ;
Morrocchi, S. ;
Papi, F. ;
Farina, A. ;
Graziano, A. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2012, 48 (04) :3450-3472
[10]   A Solution for Large-Scale Multi-Object Tracking [J].
Beard, Michael ;
Vo, Ba Tuong ;
Vo, Ba-Ngu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 :2754-2769