ON ENRICHED CYCLIC ITERATED FUNCTION SYSTEMS

被引:0
|
作者
Bisht, Ravindra K. [1 ]
机构
[1] Natl Def Acad, Dept Math, Pune 411023, India
来源
FIXED POINT THEORY | 2020年 / 25卷 / 02期
关键词
Cyclic contraction; fractal; iterated function system;
D O I
10.24193/fpt-ro.2024.2.03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a new class of generalized enriched cyclic contraction and establish a related fixed point theorem in the setting of a Banach space. As an application to the fractals, we develop a new iterated function system (IFS) consisting of enriched cyclic (b(n),phi(n)(t),beta n(t))- contractions.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 50 条
  • [1] Cyclic iterated function systems
    Pasupathi, R.
    Chand, A. K. B.
    Navascues, M. A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (03)
  • [2] Cyclic iterated function systems
    R. Pasupathi
    A. K. B. Chand
    M. A. Navascués
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [3] Generalized enriched cyclic contractions with application to generalized iterated function system
    Abbas, Mujahid
    Anjum, Rizwan
    Iqbal, Hira
    CHAOS SOLITONS & FRACTALS, 2022, 154
  • [4] Iterated Function Systems Enriched with Symmetry
    Krzysztof Leśniak
    Nina Snigireva
    Constructive Approximation, 2022, 56 : 555 - 575
  • [5] Iterated Function Systems Enriched with Symmetry
    Lesniak, Krzysztof
    Snigireva, Nina
    CONSTRUCTIVE APPROXIMATION, 2022, 56 (03) : 555 - 575
  • [6] Cyclic Multivalued Iterated Function Systems
    Pasupathi, R.
    Chand, A. K. B.
    Navascues, M. A.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 245 - 256
  • [7] Fractal Tilings from Iterated Function Systems
    Michael Barnsley
    Andrew Vince
    Discrete & Computational Geometry, 2014, 51 : 729 - 752
  • [8] Fractal Tilings from Iterated Function Systems
    Barnsley, Michael
    Vince, Andrew
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (03) : 729 - 752
  • [9] A note on invariant sets of iterated function systems
    Stacho, L. L.
    Szabo, L. I.
    ACTA MATHEMATICA HUNGARICA, 2008, 119 (1-2) : 159 - 164
  • [10] A note on invariant sets of iterated function systems
    L. L. Stachó
    L. I. Szabó
    Acta Mathematica Hungarica, 2008, 119 : 159 - 164