MGRCFusion: An infrared and visible image fusion network based on multi-scale group residual convolution

被引:0
|
作者
Zhu, Pan [1 ]
Yin, Yufei [1 ]
Zhou, Xinglin [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Machinery & Automat, Wuhan 430081, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Image fusion; Infrared and visible image; Multi-scale group residual convolution; Dense connection;
D O I
10.1016/j.optlastec.2024.111576
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The purpose of fusing infrared and visible images is to obtain an informative image that contains bright thermal targets and rich visible texture details. However, the existing deep learning-based algorithms generally neglect finer deep-level multi-scale features, and only the last layer of features is injected into the feature fusion strategy. To this end, we propose an optimized network model for deeper-level multi-scale features extraction based on multi-scale group residual convolution. Meanwhile, a dense connection module is designed to adequately integrate these multi-scale feature information. We contrast our method with advanced deep learning-based algorithms on multiple datasets. Extensive qualitative and quantitative experiments reveal that our method surpasses the existing fusion methods. Furthermore, ablation experiments illustrate the excellence of the multi-scale group residual convolution module for infrared and visible image fusion.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Multi-Scale Infrared and Visible Image Fusion Network Based on Context Perception
    Zhao, Huixuan
    Cheng, Jinyong
    Du, Rundong
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 395 - 400
  • [2] MRASFusion: A multi-scale residual attention infrared and visible image fusion network based on semantic segmentation guidance
    An, Rongsheng
    Liu, Gang
    Qian, Yao
    Xing, Mengliang
    Tang, Haojie
    INFRARED PHYSICS & TECHNOLOGY, 2024, 139
  • [3] Infrared and visible image fusion using multi-scale pyramid network
    Zuo, Fengyuan
    Huang, Yongdong
    Li, Qiufu
    Su, Weijian
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (05)
  • [4] Infrared and visible image fusion based on multi-scale dense attention connection network
    Chen Y.
    Zhang J.
    Wang Z.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (18): : 2253 - 2266
  • [5] Deep Neural Network for Infrared and Visible Image Fusion Based on Multi-scale Decomposition and Interactive Residual Coordinate Attention
    Zong, Sha
    Xie, Zhihua
    Li, Qiang
    Liu, Guodong
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 254 - 262
  • [6] Hybrid Dilated Convolution with Multi-Scale Residual Fusion Network for Hyperspectral Image Classification
    Li, Chenming
    Qiu, Zelin
    Cao, Xueying
    Chen, Zhonghao
    Gao, Hongmin
    Hua, Zaijun
    MICROMACHINES, 2021, 12 (05)
  • [7] Fusion of visible and infrared images based on multi-scale image enhancement
    Sun, Ming-Chao
    Zhang, Chong
    Liu, Jing-Hong
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2012, 42 (03): : 738 - 742
  • [8] An end-to-end multi-scale network based on autoencoder for infrared and visible image fusion
    Liu, Hongzhe
    Yan, Hua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (13) : 20139 - 20156
  • [9] Multi-scale unsupervised network for infrared and visible image fusion based on joint attention mechanism
    Xu, Dongdong
    Zhang, Ning
    Zhang, Yuxi
    Li, Zheng
    Zhao, Zhikang
    Wang, Yongcheng
    Infrared Physics and Technology, 2022, 125
  • [10] An end-to-end multi-scale network based on autoencoder for infrared and visible image fusion
    Hongzhe Liu
    Hua Yan
    Multimedia Tools and Applications, 2023, 82 : 20139 - 20156