EGDNet: an efficient glomerular detection network for multiple anomalous pathological feature in glomerulonephritis

被引:20
作者
Ali, Saba Ghazanfar [1 ]
Wang, Xiaoxia [2 ]
Li, Ping [3 ,4 ]
Li, Huating [5 ]
Yang, Po [6 ]
Jung, Younhyun [7 ]
Qin, Jing [8 ]
Kim, Jinman [9 ]
Sheng, Bin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Dept Nephrol, Shanghai 200336, Peoples R China
[3] Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Sch Design, Kowloon, Hong Kong, Peoples R China
[5] Shanghai Jiao Tong Univ, Affiliated Peoples Hosp 6, Shanghai 200233, Peoples R China
[6] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, England
[7] Gachon Univ, Dept Software, Seongnam Si, South Korea
[8] Hong Kong Polytech Univ, Ctr Smart Hlth, Sch Nursing, Kowloon, Hong Kong, Peoples R China
[9] Univ Sydney, Sch Comp Sci, Biomed & Multimedia Informat Technol Res Grp, Sydney, NSW 2006, Australia
关键词
Glomerulonephritis; Object detection; Multi-anomalous pathological features; Inter-class imbalance; Feature pyramid balancing; SEGMENTATION;
D O I
10.1007/s00371-024-03570-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Glomerulonephritis (GN) is a severe kidney disorder in which the tissues in the kidney become inflamed and have problems filtering waste from the blood. Typical approaches for GN diagnosis require a specialist's examination of pathological glomerular features (PGF) in pathology images of a patient. These PGF are primarily analyzed via manual quantitative evaluation, which is a time-consuming, labor-intensive, and error-prone task for doctors. Thus, automatic and accurate detection of PGF is crucial for the efficient diagnosis of GN and other kidney-related diseases. Recent advances in convolutional neural network-based deep learning methods have shown the capability of learning complex structural variants with promising detection results in medical image applications. However, these methods are not directly applicable to glomerular detection due to large spatial and structural variability and inter-class imbalance. Thus, we propose an efficient glomerular detection network (EGDNet) for the first time for seven types of PGF detection. Our EGDNet consists of four modules: (i) a hybrid data augmentation strategy to resolve dataset problems, (ii) an efficient intersection over unit balancing module for uniform sampling of hard and easy samples, (iii) a feature pyramid balancing module to obtain balanced multi-scale features for robust detection, and (iv) balanced L1 regression loss which alleviates the impact of anomalous data for multi-PGF detection. We also formulated a private dataset of seven PGF from an affiliated hospital in Shanghai, China. Experiments on the dataset show that our EGDNet outperforms state-of-the-art methods by achieving superior accuracy of 91.2%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 94.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, and 94.2%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} on small, medium, and large pathological features, respectively.
引用
收藏
页码:2817 / 2834
页数:18
相关论文
共 50 条
[21]   Focal Loss for Dense Object Detection [J].
Lin, Tsung-Yi ;
Goyal, Priya ;
Girshick, Ross ;
He, Kaiming ;
Dollar, Piotr .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (02) :318-327
[22]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944
[23]   EAPT: Efficient Attention Pyramid Transformer for Image Processing [J].
Lin, Xiao ;
Sun, Shuzhou ;
Huang, Wei ;
Sheng, Bin ;
Li, Ping ;
Feng, David Dagan .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :50-61
[24]   Co-Correcting: Noise-Tolerant Medical Image Classification via Mutual Label Correction [J].
Liu, Jiarun ;
Li, Ruirui ;
Sun, Chuan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) :3580-3592
[25]   Path Aggregation Network for Instance Segmentation [J].
Liu, Shu ;
Qi, Lu ;
Qin, Haifang ;
Shi, Jianping ;
Jia, Jiaya .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8759-8768
[26]   Structure and Illumination Constrained GAN for Medical Image Enhancement [J].
Ma, Yuhui ;
Liu, Jiang ;
Liu, Yonghuai ;
Fu, Huazhu ;
Hu, Yan ;
Cheng, Jun ;
Qi, Hong ;
Wu, Yufei ;
Zhang, Jiong ;
Zhao, Yitian .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) :3955-3967
[27]   AN APPROACH FOR DETECTION OF GLOMERULI IN MULTISITE DIGITAL PATHOLOGY [J].
Maree, R. ;
Dallongeville, S. ;
Olivo-Marin, J. -C. ;
Meas-Yedid, V. .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :1033-1036
[28]   Automatic segmentation of whole-slide H&E stained breast histopathology images using a deep convolutional neural network architecture [J].
Maria Priego-Torres, Blanca ;
Sanchez-Morillo, Daniel ;
Angel Fernandez-Granero, Miguel ;
Garcia-Rojo, Marcial .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 151
[29]   Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections [J].
Marsh, Jon N. ;
Matlock, Matthew K. ;
Kudose, Satoru ;
Liu, Ta-Chiang ;
Stappenbeck, Thaddeus S. ;
Gaut, Joseph P. ;
Swamidass, S. Joshua .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (12) :2718-2728
[30]  
Olivier A, 2021, PR MACH LEARN RES, V143, P554