Stance detection: a practical guide to classifying political beliefs in text

被引:5
|
作者
Burnham, Michael [1 ]
机构
[1] Penn State Univ, Dept Polit Sci, State Coll, PA 16801 USA
关键词
natural language processing; sentiment analysis; stance detection; text as data;
D O I
10.1017/psrm.2024.35
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
Stance detection is identifying expressed beliefs in a document. While researchers widely use sentiment analysis for this, recent research demonstrates that sentiment and stance are distinct. This paper advances text analysis methods by precisely defining stance detection and outlining three approaches: supervised classification, natural language inference, and in-context learning. I discuss how document context and trade-offs between resources and workload should inform your methods. For all three approaches I provide guidance on application and validation techniques, as well as coding tutorials for implementation. Finally, I demonstrate how newer classification approaches can replicate supervised classifiers.
引用
收藏
页数:18
相关论文
共 12 条
  • [1] Survey of Text Stance Detection
    Li Y.
    Sun Y.
    Jing W.
    Jing, Weipeng (jwp@nefu.edu.cn), 1600, Science Press (58): : 2538 - 2557
  • [2] Sentiment is Not Stance: Target-Aware Opinion Classification for Political Text Analysis
    Bestvater, Samuel E.
    Monroe, Burt L.
    POLITICAL ANALYSIS, 2023, 31 (02) : 235 - 256
  • [3] Text Stance Detection Based on Deep Learning
    Zhang, Xu
    Liu, Chunyang
    Gao, Zhongqin
    Jiang, Yue
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 193 - 199
  • [4] Multilingual stance detection in social media political debates
    Lai, Mirko
    Cignarella, Alessandra Teresa
    Hernandez Farias, Delia Irazu
    Bosco, Cristina
    Patti, Viviana
    Rosso, Paolo
    COMPUTER SPEECH AND LANGUAGE, 2020, 63
  • [5] Solving Stance Detection on Tweets as Multi-Domain and Multi-Task Text Classification
    Wang, Limin
    Wang, Dexin
    IEEE ACCESS, 2021, 9 : 157780 - 157789
  • [6] UlyssesSD-Br: Stance Detection in Brazilian Political Polls
    Maia, Dyonnatan F.
    Silva, Nadia F. F.
    Souza, Ellen P. R.
    Nunes, Augusto S.
    Procopio, Lucas C.
    Sampaio, Guthemberg da S.
    Dias, Marcio de S.
    Alves, Adrio O.
    Maia, Dyessica F.
    Ribeiro, Ingrid A.
    Pereira, Fabiola S. F.
    de Carvalho, Andre P. de L. F.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2022, 2022, 13566 : 85 - 95
  • [7] Stance Detection of Microblog Text Based on Two-Channel CNN-GRU Fusion Network
    Li, Wenfa
    Xu, Yilong
    Wang, Gongming
    IEEE ACCESS, 2019, 7 : 145944 - 145952
  • [8] Explicit Stance Detection in the Political Domain: A New Concept and Associated Dataset
    Caceres-Wright, Alexander R.
    Udhayasankar, Naveen
    Bunn, Grant
    Shuster, Stef M.
    Joseph, Kenneth
    SOCIAL, CULTURAL, AND BEHAVIORAL MODELING, SBP-BRIMS 2024, 2024, 14972 : 3 - 14
  • [9] Can Text Summarization Enhance the Headline Stance Detection Task? Benefits and Drawbacks
    Vicente, Marta
    Sepulveda-Torrres, Robiert
    Barros, Cristina
    Saquete, Estela
    Lloret, Elena
    DOCUMENT ANALYSIS AND RECOGNITION - ICDAR 2021, PT II, 2021, 12822 : 53 - 67
  • [10] An Unsupervised Normalization Algorithm for Noisy Text: A Case Study for Information Retrieval and Stance Detection
    Roy, Anurag
    Ghosh, Shalmoli
    Ghosh, Kripabandhu
    Ghosh, Saptarshi
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2021, 13 (03):