An Equipment Anomaly Diagnosis Method Based on Deep Learning

被引:0
|
作者
Ren, Mingshu [1 ]
Jiang, Qiong [2 ]
Zhou, Chengyi [3 ]
Liu, Yao [4 ,5 ]
机构
[1] Huaibei Normal Univ, Sch Econ & Management, Huaibei, Peoples R China
[2] East China Normal Univ, Sch Data Sci & Engn, Shanghai, Peoples R China
[3] Ucloud Informat Technol Ltd, Basic Prod Ctr, Shanghai, Peoples R China
[4] East China Normal Univ, MoE Engn Res Ctr Software Hardware Co Design Techn, Sch Data Sci & Engn, Shanghai, Peoples R China
[5] Lab Adv Comp & Intelligence Engn, Wuxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly identification; selective Kernel convolution blocks; depthwise separable convolution; attention mechanism; FAULT-DIAGNOSIS; NETWORK; OPTIMIZATION;
D O I
10.1142/S0218126625500136
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of intelligent manufacturing technology, the structure of industrial equipment has become more sophisticated, resulting in frequent equipment failures. However, traditional anomaly diagnosis methods suffer the issues of insufficient accuracy and are always unable to identify anomalies in time. To solve the above problems, a deep learning-based equipment anomaly diagnosis method in industrial production scenarios is proposed in this paper. Specifically, a combination model based on Selective Kernel (SK) convolution blocks is designed to improve the accuracy of anomaly identification; a lightweight model based on Depthwise Separable Convolution (DSC) and Attention Mechanism (AM) is proposed to improve the timeliness of anomaly identification; an anomaly analysis and intelligent diagnosis framework is established and implemented to automatically complete anomaly identification tasks for different equipment and practical problems. Finally, we conduct extensive experiments to validate the effectiveness of our methods. The experimental results show that the accuracy of our anomaly identification method is as high as 99.07%, and the calculation amount of the lightweight model is reduced by 84.95% compared to the baseline model.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Fault Diagnosis Method Based on Deep Active Learning For MVB Network
    Yang Y.
    Wang L.
    Wang C.
    Wang H.
    Li Y.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2022, 57 (06): : 1342 - 1348+1385
  • [22] Chemical process fault diagnosis based on a combined deep learning method
    Bao, Yu
    Wang, Bo
    Guo, Pandeng
    Wang, Jingtao
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 100 (01) : 54 - 66
  • [23] Study on Signal Recognition and Diagnosis for Spacecraft Based on Deep Learning Method
    Li, Ke
    Wang, Quanxin
    2015 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM), 2015,
  • [24] Intelligent Fault Diagnosis Method for Gearboxes Based on Deep Transfer Learning
    Wu, Zhenghao
    Bai, Huajun
    Yan, Hao
    Zhan, Xianbiao
    Guo, Chiming
    Jia, Xisheng
    PROCESSES, 2023, 11 (01)
  • [25] Partial Domain Intelligent Diagnosis Method for Rotor-Bearing System Based on Deep Learning
    Liu, Xiaoyue
    Peng, Cong
    2022 IEEE 20TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2022, : 341 - 346
  • [26] Partial discharge fault identification method for GIS equipment based on improved deep learning
    Hu, Weitao
    Li, Jianpeng
    Liu, Xiaofei
    Li, Guang
    JOURNAL OF ENGINEERING-JOE, 2024, 2024 (05):
  • [27] Power System Fault Diagnosis Method Based on Deep Reinforcement Learning
    Wang, Zirui
    Zhang, Ziqi
    Zhang, Xu
    Du, Mingxuan
    Zhang, Huiting
    Liu, Bowen
    ENERGIES, 2022, 15 (20)
  • [28] Research on Fault Diagnosis Method of Rotating Machinery Based on Deep Learning
    Chen, Zhouliang
    Li, Zhinong
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 1015 - +
  • [29] A Deep Learning Based Fault Diagnosis Method Combining Domain Knowledge and Transfer Learning
    Choudhury, Madhurjya Dev
    Kleijn, W. Bastiaan
    Blincoe, Kelly
    Dhupia, Jaspreet Singh
    2023 29TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE, M2VIP 2023, 2023,
  • [30] Deep anomaly detection in expressway based on edge computing and deep learning
    Wang, Juan
    Wang, Meng
    Liu, Qingling
    Yin, Guanxiang
    Zhang, Yuejin
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 13 (03) : 1293 - 1305