An Equipment Anomaly Diagnosis Method Based on Deep Learning

被引:0
|
作者
Ren, Mingshu [1 ]
Jiang, Qiong [2 ]
Zhou, Chengyi [3 ]
Liu, Yao [4 ,5 ]
机构
[1] Huaibei Normal Univ, Sch Econ & Management, Huaibei, Peoples R China
[2] East China Normal Univ, Sch Data Sci & Engn, Shanghai, Peoples R China
[3] Ucloud Informat Technol Ltd, Basic Prod Ctr, Shanghai, Peoples R China
[4] East China Normal Univ, MoE Engn Res Ctr Software Hardware Co Design Techn, Sch Data Sci & Engn, Shanghai, Peoples R China
[5] Lab Adv Comp & Intelligence Engn, Wuxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly identification; selective Kernel convolution blocks; depthwise separable convolution; attention mechanism; FAULT-DIAGNOSIS; NETWORK; OPTIMIZATION;
D O I
10.1142/S0218126625500136
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of intelligent manufacturing technology, the structure of industrial equipment has become more sophisticated, resulting in frequent equipment failures. However, traditional anomaly diagnosis methods suffer the issues of insufficient accuracy and are always unable to identify anomalies in time. To solve the above problems, a deep learning-based equipment anomaly diagnosis method in industrial production scenarios is proposed in this paper. Specifically, a combination model based on Selective Kernel (SK) convolution blocks is designed to improve the accuracy of anomaly identification; a lightweight model based on Depthwise Separable Convolution (DSC) and Attention Mechanism (AM) is proposed to improve the timeliness of anomaly identification; an anomaly analysis and intelligent diagnosis framework is established and implemented to automatically complete anomaly identification tasks for different equipment and practical problems. Finally, we conduct extensive experiments to validate the effectiveness of our methods. The experimental results show that the accuracy of our anomaly identification method is as high as 99.07%, and the calculation amount of the lightweight model is reduced by 84.95% compared to the baseline model.
引用
收藏
页数:26
相关论文
共 50 条
  • [11] Fine-grained transfer learning based on deep feature decomposition for rotating equipment fault diagnosis
    Dong, Jingchuan
    Su, Depeng
    Gao, Yubo
    Wu, Xiaoxin
    Jiang, Hongyu
    Chen, Tao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [12] Deep residual learning-based fault diagnosis method for rotating machinery
    Zhang, Wei
    Li, Xiang
    Ding, Qian
    ISA TRANSACTIONS, 2019, 95 : 295 - 305
  • [13] Image deep learning in fault diagnosis of mechanical equipment
    Wang, Chuanhao
    Sun, Yongjian
    Wang, Xiaohong
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (06) : 2475 - 2515
  • [14] APPLICATION OF DEEP LEARNING IN THE HYDRAULIC EQUIPMENT FAULT DIAGNOSIS
    Liu Jing
    Liu Yankai
    Chen Shanshan
    Wang Zhijie
    Ji Haipeng
    2018 IEEE INTERNATIONAL CONFERENCE ON SMART MANUFACTURING, INDUSTRIAL & LOGISTICS ENGINEERING (SMILE), 2018, : 12 - 16
  • [15] Dual-input anomaly detection method based on deep reinforcement learning
    Kang, Yuxiang
    Chen, Guo
    Wang, Hao
    Pan, Wenping
    Wei, Xunkai
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (03): : 1578 - 1591
  • [16] Bearing fault diagnosis method based on deep metric learning
    Li X.
    Xu Z.
    Xiong W.
    Wang Z.
    Tan J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (15): : 25 - 31
  • [17] A Deep Learning Based Fault Diagnosis Method With Hyperparameter Optimization by Using Parallel Computing
    Guo, Chaozhong
    Li, Lin
    Hu, Yuanyuan
    Yan, Jihong
    IEEE ACCESS, 2020, 8 : 131248 - 131256
  • [18] Continual learning classification method and its application to equipment fault diagnosis
    Li, Dong
    Liu, Shulin
    Gao, Furong
    Sun, Xin
    APPLIED INTELLIGENCE, 2022, 52 (01) : 858 - 874
  • [19] A rolling bearing fault diagnosis method based on deep attention transfer learning at different rotations
    Chen R.
    Tang L.
    Hu X.
    Yang L.
    Zhao L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (12): : 95 - 101and195
  • [20] Prediction of mechanical equipment fault diagnosis based on IPSO-GRU deep learning algorithm
    Wang P.
    Tan H.
    Ji C.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)