Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods

被引:3
作者
Zhang, Yongfeng [1 ]
Bu, Jinwei [1 ]
Zuo, Xiaoqing [1 ]
Yu, Kegen [2 ]
Wang, Qiulan [1 ]
Huang, Weimin [3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Land Resources Engn, Kunming 650093, Yunnan, Peoples R China
[2] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NF A1B 3X5, Canada
基金
中国国家自然科学基金;
关键词
cyclone global navigation satellite system (CYGNSS); delay-Doppler map (DDM); global navigation satellite system reflectometry (GNSS-R); remote sensing data; VWC; ensemble machine learning; SOIL-MOISTURE; CYGNSS DATA; INDEXES; COVER; NDVI;
D O I
10.3390/rs16152793
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vegetation water content (VWC) is a crucial parameter for evaluating vegetation growth, climate change, natural disasters such as forest fires, and drought prediction. Spaceborne global navigation satellite system reflectometry (GNSS-R) has become a valuable tool for soil moisture (SM) and biomass remote sensing (RS) due to its higher spatial resolution compared with microwave measurements. Although previous studies have confirmed the enormous potential of spaceborne GNSS-R for vegetation monitoring, the utilization of this technology to fuse multiple RS parameters to retrieve VWC is not yet mature. For this purpose, this paper constructs a local high-spatiotemporal-resolution spaceborne GNSS-R VWC retrieval model that integrates key information, such as bistatic radar cross section (BRCS), effective scattering area, CYGNSS variables, and surface auxiliary parameters based on five ensemble machine learning (ML) algorithms (i.e., bagging tree (BT), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), random forest (RF), and light gradient boosting machine (LightGBM)). We extensively tested the performance of different models using SMAP ancillary data as validation data, and the results show that the root mean square errors (RMSEs) of the BT, XGBoost, RF, and LightGBM models in VWC retrieval are better than 0.50 kg/m2. Among them, the BT and RF models performed the best in localized VWC retrieval, with RMSE values of 0.50 kg/m2. Conversely, the XGBoost model exhibits the worst performance, with an RMSE of 0.85 kg/m2. In terms of RMSE, the RF model demonstrates improvements of 70.00%, 52.00%, and 32.00% over the XGBoost, LightGBM, and GBDT models, respectively.
引用
收藏
页数:23
相关论文
共 82 条
  • [1] An Algorithm for Detecting Coherence in Cyclone Global Navigation Satellite System Mission Level-1 Delay-Doppler Maps
    Al-Khaldi, Mohammad M.
    Johnson, Joel T.
    Gleason, Scott
    Loria, Eric
    O'Brien, Andrew J.
    Yi, Yuchan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4454 - 4463
  • [2] Seasonal and interannual variability of climate and vegetation indices across the Amazon
    Brando, Paulo M.
    Goetz, Scott J.
    Baccini, Alessandro
    Nepstad, Daniel C.
    Beck, Pieter S. A.
    Christman, Mary C.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (33) : 14685 - 14690
  • [3] Land Remote Sensing Applications Using Spaceborne GNSS Reflectometry: A Comprehensive Overview
    Bu, Jinwei
    Wang, Qiulan
    Wang, Ziyi
    Fan, Shaoqiang
    Liu, Xinyu
    Zuo, Xiaoqing
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 12811 - 12841
  • [4] Combining ERA5 data and CYGNSS observations for the joint retrieval of global significant wave height of ocean swell and wind wave: a deep convolutional neural network approach
    Bu, Jinwei
    Yu, Kegen
    Ni, Jun
    Huang, Weimin
    [J]. JOURNAL OF GEODESY, 2023, 97 (08)
  • [5] GloWS-Net: A Deep Learning Framework for Retrieving Global Sea Surface Wind Speed Using Spaceborne GNSS-R Data
    Bu, Jinwei
    Yu, Kegen
    Zuo, Xiaoqing
    Ni, Jun
    Li, Yongfa
    Huang, Weimin
    [J]. REMOTE SENSING, 2023, 15 (03)
  • [6] Estimation of Swell Height Using Spaceborne GNSS-R Data from Eight CYGNSS Satellites
    Bu, Jinwei
    Yu, Kegen
    Park, Hyuk
    Huang, Weimin
    Han, Shuai
    Yan, Qingyun
    Qian, Nijia
    Lin, Yiruo
    [J]. REMOTE SENSING, 2022, 14 (18)
  • [7] Developing and Testing Models for Sea Surface Wind Speed Estimation with GNSS-R Delay Doppler Maps and Delay Waveforms
    Bu, Jinwei
    Yu, Kegen
    Zhu, Yongchao
    Qian, Nijia
    Chang, Jun
    [J]. REMOTE SENSING, 2020, 12 (22) : 1 - 24
  • [8] Sensitivity of Passive Microwave Observations to Soil Moisture and Vegetation Water Content: L-Band to W-Band
    Calvet, Jean-Christophe
    Wigneron, Jean-Pierre
    Walker, Jeffrey
    Karbou, Fatima
    Chanzy, Andre
    Albergel, Clement
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (04): : 1190 - 1199
  • [9] Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation
    Camps, Adriano
    Park, Hyuk
    Pablos, Miriam
    Foti, Giuseppe
    Gommenginger, Christine P.
    Liu, Pang-Wei
    Judge, Jasmeet
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (10) : 4730 - 4742
  • [10] Characterization of dry-snow sub-structure using GNSS reflected signals
    Cardellach, Estel
    Fabra, Fran
    Rius, Antonio
    Pettinato, Simone
    D'Addio, Salvatore
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 124 : 122 - 134