Deep Learning Beamspace Channel Estimation for mmWave Massive MIMO with Switch-Based Selection Network

被引:0
作者
Li, Zhixi [1 ]
Xue, Qiulin [1 ]
Dong, Chao [1 ]
Niu, Kai [1 ]
Wang, Hao [1 ]
Huang, Qiuping [2 ,3 ]
Gao, Qiubin [2 ,3 ]
Fei, Yongqiang [2 ,3 ]
Zuo, Jun [2 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, Key Lab Univ Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
[2] CICT Mobile Commun Technol Co Ltd, Beijing 100083, Peoples R China
[3] China Acad Telecommun Technol CATT, State Key Lab Wireless Mobile Commun, Beijing 100191, Peoples R China
来源
2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Millimeter-wave; massive MIMO; channel estimation; switch-based selection network; deep learning; MILLIMETER-WAVE MIMO;
D O I
10.1109/WCNC57260.2024.10570856
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a deep learning-based beamspace channel estimation approach that better exploits the inherent sparsity of the mmWave MIMO channel. On one hand, we replace conventional complicated phase shifter networks with switch-based selection networks, whose sparse connectivity is more adapted to the sparsity of mmWave channels. On the other hand, we propose an attention-Unet model for accurate beamspace channel estimation. The architecture comprises an encoder-decoder structure with attention mechanism. By selectively focusing on the dominant part, the attention mechanism can further capture the sparsity of the beamspace channel. Simulation results demonstrate that the proposed approach outperforms the existing phase shifter-based techniques under both the widely used Saleh-Valenzuela channel model and the open-source DeepMIMO dataset based on ray-tracing.
引用
收藏
页数:6
相关论文
共 16 条
[1]  
Alkhateeb A., 2019, ARXIV
[2]   Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems [J].
Alkhateeb, Ahmed ;
El Ayach, Omar ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :831-846
[3]   Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering [J].
Anderson, Peter ;
He, Xiaodong ;
Buehler, Chris ;
Teney, Damien ;
Johnson, Mark ;
Gould, Stephen ;
Zhang, Lei .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6077-6086
[4]   AMP-Inspired Deep Networks for Sparse Linear Inverse Problems [J].
Borgerding, Mark ;
Schniter, Philip ;
Rangan, Sundeep .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (16) :4293-4308
[5]   Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise [J].
Cai, T. Tony ;
Wang, Lie .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) :4680-4688
[6]   Spatially Sparse Precoding in Millimeter Wave MIMO Systems [J].
El Ayach, Omar ;
Rajagopal, Sridhar ;
Abu-Surra, Shadi ;
Pi, Zhouyue ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) :1499-1513
[7]   Reliable Beamspace Channel Estimation for Millimeter-Wave Massive MIMO Systems with Lens Antenna Array [J].
Gao, Xinyu ;
Dai, Linglong ;
Han, Shuangfeng ;
Chih-Lin, I ;
Wang, Xiaodong .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (09) :6010-6021
[8]  
Gao Z., 2023, MILLIMETER WAVE SUBT, P41
[9]  
OKTAY O, 2018, 1 C MED IM DEEP LEAR
[10]   An Introduction to Millimeter-Wave Mobile Broadband Systems [J].
Pi, Zhouyue ;
Khan, Farooq .
IEEE COMMUNICATIONS MAGAZINE, 2011, 49 (06) :101-107