Deep Learning Beamspace Channel Estimation for mmWave Massive MIMO with Switch-Based Selection Network

被引:0
作者
Li, Zhixi [1 ]
Xue, Qiulin [1 ]
Dong, Chao [1 ]
Niu, Kai [1 ]
Wang, Hao [1 ]
Huang, Qiuping [2 ,3 ]
Gao, Qiubin [2 ,3 ]
Fei, Yongqiang [2 ,3 ]
Zuo, Jun [2 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, Key Lab Univ Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
[2] CICT Mobile Commun Technol Co Ltd, Beijing 100083, Peoples R China
[3] China Acad Telecommun Technol CATT, State Key Lab Wireless Mobile Commun, Beijing 100191, Peoples R China
来源
2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Millimeter-wave; massive MIMO; channel estimation; switch-based selection network; deep learning; MILLIMETER-WAVE MIMO;
D O I
10.1109/WCNC57260.2024.10570856
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a deep learning-based beamspace channel estimation approach that better exploits the inherent sparsity of the mmWave MIMO channel. On one hand, we replace conventional complicated phase shifter networks with switch-based selection networks, whose sparse connectivity is more adapted to the sparsity of mmWave channels. On the other hand, we propose an attention-Unet model for accurate beamspace channel estimation. The architecture comprises an encoder-decoder structure with attention mechanism. By selectively focusing on the dominant part, the attention mechanism can further capture the sparsity of the beamspace channel. Simulation results demonstrate that the proposed approach outperforms the existing phase shifter-based techniques under both the widely used Saleh-Valenzuela channel model and the open-source DeepMIMO dataset based on ray-tracing.
引用
收藏
页数:6
相关论文
共 16 条
  • [1] Alkhateeb A., 2019, ARXIV
  • [2] Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems
    Alkhateeb, Ahmed
    El Ayach, Omar
    Leus, Geert
    Heath, Robert W., Jr.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) : 831 - 846
  • [3] Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments
    Anderson, Peter
    Wu, Qi
    Teney, Damien
    Bruce, Jake
    Johnson, Mark
    Sunderhauf, Niko
    Reid, Ian
    Gould, Stephen
    van den Hengel, Anton
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3674 - 3683
  • [4] AMP-Inspired Deep Networks for Sparse Linear Inverse Problems
    Borgerding, Mark
    Schniter, Philip
    Rangan, Sundeep
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (16) : 4293 - 4308
  • [5] Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise
    Cai, T. Tony
    Wang, Lie
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) : 4680 - 4688
  • [6] Spatially Sparse Precoding in Millimeter Wave MIMO Systems
    El Ayach, Omar
    Rajagopal, Sridhar
    Abu-Surra, Shadi
    Pi, Zhouyue
    Heath, Robert W., Jr.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) : 1499 - 1513
  • [7] Reliable Beamspace Channel Estimation for Millimeter-Wave Massive MIMO Systems with Lens Antenna Array
    Gao, Xinyu
    Dai, Linglong
    Han, Shuangfeng
    Chih-Lin, I
    Wang, Xiaodong
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (09) : 6010 - 6021
  • [8] Gao Z., 2023, MILLIMETER WAVE SUBT, P41
  • [9] Oktay O., 2018, Attention u-net: Learning where to look for the pancreas
  • [10] An Introduction to Millimeter-Wave Mobile Broadband Systems
    Pi, Zhouyue
    Khan, Farooq
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2011, 49 (06) : 101 - 107