Multi-task deep latent spaces for cancer survival and drug sensitivity prediction

被引:1
作者
Rintala, Teemu J. [1 ]
Napolitano, Francesco [2 ]
Fortino, Vittorio [1 ]
机构
[1] Univ Eastern Finland, Inst Biomed, Sch Med, Yliopistonranta 8, Kuopio 70210, Finland
[2] Univ Sannio, Dept Sci & Technol, I-82100 Benevento, Italy
基金
芬兰科学院;
关键词
RESOURCE; DISCOVERY; GENOMICS;
D O I
10.1093/bioinformatics/btae388
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Cancer is a very heterogeneous disease that can be difficult to treat without addressing the specific mechanisms driving tumour progression in a given patient. High-throughput screening and sequencing data from cancer cell-lines has driven many developments in drug development, however, there are important aspects crucial to precision medicine that are often overlooked, namely the inherent differences between tumours in patients and the cell-lines used to model them in vitro. Recent developments in transfer learning methods for patient and cell-line data have shown progress in translating results from cell-lines to individual patients in silico. However, transfer learning can be forceful and there is a risk that clinically relevant patterns in the omics profiles of patients are lost in the process.Results We present MODAE, a novel deep learning algorithm to integrate omics profiles from cell-lines and patients for the purposes of exploring precision medicine opportunities. MODAE implements patient survival prediction as an additional task in a drug-sensitivity transfer learning schema and aims to balance autoencoding, domain adaptation, drug-sensitivity prediction, and survival prediction objectives in order to better preserve the heterogeneity between patients that is relevant to survival. While burdened with these additional tasks, MODAE performed on par with baseline survival models, but struggled in the drug-sensitivity prediction task. Nevertheless, these preliminary results were promising and show that MODAE provides a novel AI-based method for prioritizing drug treatments for high-risk patients.Availability and implementation https://github.com/UEFBiomedicalInformaticsLab/MODAE.
引用
收藏
页码:ii182 / ii189
页数:8
相关论文
共 25 条
[21]   Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset [J].
Seashore-Ludlow, Brinton ;
Rees, Matthew G. ;
Cheah, Jaime H. ;
Cokol, Murat ;
Price, Edmund V. ;
Coletti, Matthew E. ;
Jones, Victor ;
Bodycombe, Nicole E. ;
Soule, Christian K. ;
Gould, Joshua ;
Alexander, Benjamin ;
Li, Ava ;
Montgomery, Philip ;
Wawer, Mathias J. ;
Kuru, Nurdan ;
Kotz, Joanne D. ;
Hon, C. Suk-Yee ;
Munoz, Benito ;
Liefeld, Ted ;
Dancik, Vlado ;
Bittker, Joshua A. ;
Palmer, Michelle ;
Bradner, James E. ;
Shamji, Alykhan F. ;
Clemons, Paul A. ;
Schreiber, Stuart L. .
CANCER DISCOVERY, 2015, 5 (11) :1210-1223
[22]   PharmacoGx: an R package for analysis of large pharmacogenomic datasets [J].
Smirnov, Petr ;
Safikhani, Zhaleh ;
El-Hachem, Nehme ;
Wang, Dong ;
She, Adrian ;
Olsen, Catharina ;
Freeman, Mark ;
Selby, Heather ;
Gendoo, Deena M. A. ;
Grossmann, Patrick ;
Beck, Andrew H. ;
Aerts, Hugo J. W. L. ;
Lupien, Mathieu ;
Goldenberg, Anna ;
Haibe-Kains, Benjamin .
BIOINFORMATICS, 2016, 32 (08) :1244-1246
[23]   RNA sequencing-based single sample predictors of molecular subtype and risk of recurrence for clinical assessment of early-stage breast cancer [J].
Staaf, Johan ;
Hakkinen, Jari ;
Hegardt, Cecilia ;
Saal, Lao H. ;
Kimbung, Siker ;
Hedenfalk, Ingrid ;
Lien, Tonje ;
Sorlie, Therese ;
Naume, Bjorn ;
Russnes, Hege ;
Marcone, Rachel ;
Ayyanan, Ayyakkannu ;
Brisken, Cathrin ;
Malterling, Rebecka R. ;
Asking, Bengt ;
Olofsson, Helena ;
Lindman, Henrik ;
Bendahl, Par-Ola ;
Ehinger, Anna ;
Larsson, Christer ;
Loman, Niklas ;
Ryden, Lisa ;
Malmberg, Martin ;
Borg, Ake ;
Vallon-Christersson, Johan .
NPJ BREAST CANCER, 2022, 8 (01)
[24]   Survival Prediction of Lung Cancer Using Small-Size Clinical Data with a Multiple Task Variational Autoencoder [J].
Thanh-Hung Vo ;
Lee, Guee-Sang ;
Yang, Hyung-Jeong ;
Oh, In-Jae ;
Kim, Soo-Hyung ;
Kang, Sae-Ryung .
ELECTRONICS, 2021, 10 (12)
[25]   Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells [J].
Yang, Wanjuan ;
Soares, Jorge ;
Greninger, Patricia ;
Edelman, Elena J. ;
Lightfoot, Howard ;
Forbes, Simon ;
Bindal, Nidhi ;
Beare, Dave ;
Smith, James A. ;
Thompson, I. Richard ;
Ramaswamy, Sridhar ;
Futreal, P. Andrew ;
Haber, Daniel A. ;
Stratton, Michael R. ;
Benes, Cyril ;
McDermott, Ultan ;
Garnett, Mathew J. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D955-D961