Multi-task deep latent spaces for cancer survival and drug sensitivity prediction

被引:1
作者
Rintala, Teemu J. [1 ]
Napolitano, Francesco [2 ]
Fortino, Vittorio [1 ]
机构
[1] Univ Eastern Finland, Inst Biomed, Sch Med, Yliopistonranta 8, Kuopio 70210, Finland
[2] Univ Sannio, Dept Sci & Technol, I-82100 Benevento, Italy
基金
芬兰科学院;
关键词
RESOURCE; DISCOVERY; GENOMICS;
D O I
10.1093/bioinformatics/btae388
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Cancer is a very heterogeneous disease that can be difficult to treat without addressing the specific mechanisms driving tumour progression in a given patient. High-throughput screening and sequencing data from cancer cell-lines has driven many developments in drug development, however, there are important aspects crucial to precision medicine that are often overlooked, namely the inherent differences between tumours in patients and the cell-lines used to model them in vitro. Recent developments in transfer learning methods for patient and cell-line data have shown progress in translating results from cell-lines to individual patients in silico. However, transfer learning can be forceful and there is a risk that clinically relevant patterns in the omics profiles of patients are lost in the process.Results We present MODAE, a novel deep learning algorithm to integrate omics profiles from cell-lines and patients for the purposes of exploring precision medicine opportunities. MODAE implements patient survival prediction as an additional task in a drug-sensitivity transfer learning schema and aims to balance autoencoding, domain adaptation, drug-sensitivity prediction, and survival prediction objectives in order to better preserve the heterogeneity between patients that is relevant to survival. While burdened with these additional tasks, MODAE performed on par with baseline survival models, but struggled in the drug-sensitivity prediction task. Nevertheless, these preliminary results were promising and show that MODAE provides a novel AI-based method for prioritizing drug treatments for high-risk patients.Availability and implementation https://github.com/UEFBiomedicalInformaticsLab/MODAE.
引用
收藏
页码:ii182 / ii189
页数:8
相关论文
共 25 条
[1]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[2]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[3]   An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules [J].
Basu, Amrita ;
Bodycombe, Nicole E. ;
Cheah, Jaime H. ;
Price, Edmund V. ;
Liu, Ke ;
Schaefer, Giannina I. ;
Ebright, Richard Y. ;
Stewart, Michelle L. ;
Ito, Daisuke ;
Wang, Stephanie ;
Bracha, Abigail L. ;
Liefeld, Ted ;
Wawer, Mathias ;
Gilbert, Joshua C. ;
Wilson, Andrew J. ;
Stransky, Nicolas ;
Kryukov, Gregory V. ;
Dancik, Vlado ;
Barretina, Jordi ;
Garraway, Levi A. ;
Hon, C. Suk-Yee ;
Munoz, Benito ;
Bittker, Joshua A. ;
Stockwell, Brent R. ;
Khabele, Dineo ;
Stern, Andrew M. ;
Clemons, Paul A. ;
Shamji, Alykhan F. ;
Schreiber, Stuart L. .
CELL, 2013, 154 (05) :1151-1161
[4]   Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data [J].
Chen, Junyi ;
Wu, Zhenyu ;
Qi, Ren ;
Ma, Anjun ;
Zhao, Jing ;
Xu, Dong ;
Li, Lang ;
Ma, Qin .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   Cancer genomics: from discovery science to personalized medicine [J].
Chin, Lynda ;
Andersen, Jannik N. ;
Futreal, P. Andrew .
NATURE MEDICINE, 2011, 17 (03) :297-303
[6]   Discovering the anticancer potential of non-oncology drugs by systematic viability profiling [J].
Corsello, Steven M. ;
Nagari, Rohith T. ;
Spangler, Ryan D. ;
Rossen, Jordan ;
Kocak, Mustafa ;
Bryan, Jordan G. ;
Humeidi, Ranad ;
Peck, David ;
Wu, Xiaoyun ;
Tang, Andrew A. ;
Wang, Vickie M. ;
Bender, Samantha A. ;
Lemire, Evan ;
Narayan, Rajiv ;
Montgomery, Philip ;
Ben-David, Uri ;
Garvie, Colin W. ;
Chen, Yejia ;
Rees, Matthew G. ;
Lyons, Nicholas J. ;
McFarland, James M. ;
Wong, Bang T. ;
Wang, Li ;
Dumont, Nancy ;
O'Hearn, Patrick J. ;
Stefan, Eric ;
Doench, John G. ;
Harrington, Caitlin N. ;
Greulich, Heidi ;
Meyerson, Matthew ;
Vazquez, Francisca ;
Subramanian, Aravind ;
Roth, Jennifer A. ;
Bittker, Joshua A. ;
Boehm, Jesse S. ;
Mader, Christopher C. ;
Tsherniak, Aviad ;
Golub, Todd R. .
NATURE CANCER, 2020, 1 (02) :235-+
[7]   A community effort to assess and improve drug sensitivity prediction algorithms [J].
Costello, James C. ;
Heiser, Laura M. ;
Georgii, Elisabeth ;
Gonen, Mehmet ;
Menden, Michael P. ;
Wang, Nicholas J. ;
Bansal, Mukesh ;
Ammad-ud-din, Muhammad ;
Hintsanen, Petteri ;
Khan, Suleiman A. ;
Mpindi, John-Patrick ;
Kallioniemi, Olli ;
Honkela, Antti ;
Aittokallio, Tero ;
Wennerberg, Krister ;
Collins, James J. ;
Gallahan, Dan ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Kaski, Samuel ;
Gray, Joe W. ;
Stolovitzky, Gustavo .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1202-U57
[8]   Adversarial deconfounding autoencoder for learning robust gene expression embeddings [J].
Dincer, Ayse B. ;
Janizek, Joseph D. ;
Lee, Su-In .
BIOINFORMATICS, 2020, 36 :I573-I582
[9]   EFFICIENCY OF COXS LIKELIHOOD FUNCTION FOR CENSORED DATA [J].
EFRON, B .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (359) :557-565
[10]   Next-generation characterization of the Cancer Cell Line Encyclopedia [J].
Ghandi, Mahmoud ;
Huang, Franklin W. ;
Jane-Valbuena, Judit ;
Kryukov, Gregory V. ;
Lo, Christopher C. ;
McDonald, E. Robert, III ;
Barretina, Jordi ;
Gelfand, Ellen T. ;
Bielski, Craig M. ;
Li, Haoxin ;
Hu, Kevin ;
Andreev-Drakhlin, Alexander Y. ;
Kim, Jaegil ;
Hess, Julian M. ;
Haas, Brian J. ;
Aguet, Francois ;
Weir, Barbara A. ;
Rothberg, Michael V. ;
Paolella, Brenton R. ;
Lawrence, Michael S. ;
Akbani, Rehan ;
Lu, Yiling ;
Tiv, Hong L. ;
Gokhale, Prafulla C. ;
De Weck, Antoine ;
Mansour, Ali Amin ;
Oh, Coyin ;
Shih, Juliann ;
Hadi, Kevin ;
Rosen, Yanay ;
Bistline, Jonathan ;
Venkatesan, Kavitha ;
Reddy, Anupama ;
Sonkin, Dmitriy ;
Liu, Manway ;
Lehar, Joseph ;
Korn, Joshua M. ;
Porter, Dale A. ;
Jones, Michael D. ;
Golji, Javad ;
Caponigro, Giordano ;
Taylor, Jordan E. ;
Dunning, Caitlin M. ;
Creech, Amanda L. ;
Warren, Allison C. ;
McFarland, James M. ;
Zamanighomi, Mahdi ;
Kauffmann, Audrey ;
Stransky, Nicolas ;
Imielinski, Marcin .
NATURE, 2019, 569 (7757) :503-+