Anomalies, representations, and self-supervision

被引:7
作者
Dillon, Barry M. [1 ,2 ]
Favaro, Luigi [1 ]
Feiden, Friedrich [1 ]
Modak, Tanmoy [1 ,3 ]
Plehn, Tilman [1 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Heidelberg, Germany
[2] Ulster Univ, ISRC, Derry, North Ireland
[3] Indian Inst Sci Educ & Res, Dept Phys Sci, Bengaluru, India
来源
SCIPOST PHYSICS CORE | 2024年 / 7卷 / 03期
关键词
D O I
10.21468/SciPostPhysCore.7.3.056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a self-supervised method for density-based anomaly detection using contrastive learning, and test it using event-level anomaly data from CMS ADC2021. The AnomalyCLR technique is data-driven and uses augmentations of the background data to mimic non-Standard-Model events in a model-agnostic way. It uses a permutationinvariant Transformer Encoder architecture to map the objects measured in a collider event to the representation space, where the data augmentations define a representation space which is sensitive to potential anomalous features. An AutoEncoder trained on background representations then computes anomaly scores for a variety of signals in the representation space. With AnomalyCLR we find significant improvements on performance metrics for all signals when compared to the raw data baseline.
引用
收藏
页数:19
相关论文
共 71 条
[1]   Dijet Resonance Search with Weak Supervision Using √S=13 TeV pp Collisions in the ATLAS Detector [J].
Aad, G. ;
Abbott, B. ;
Abbott, D. C. ;
Abud, A. Abed ;
Abeling, K. ;
Abhayasinghe, D. K. ;
Abidi, S. H. ;
AbouZeid, O. S. ;
Abraham, N. L. ;
Abramowicz, H. ;
Abreu, H. ;
Abulaiti, Y. ;
Acharya, B. S. ;
Achkar, B. ;
Adam, L. ;
Bourdarios, C. Adam ;
Adamczyk, L. ;
Adamek, L. ;
Adelman, J. ;
Adersberger, M. ;
Adiguzel, A. ;
Adorni, S. ;
Adye, T. ;
Affolder, A. A. ;
Afik, Y. ;
Agapopoulou, C. ;
Agaras, M. N. ;
Aggarwal, A. ;
Agheorghiesei, C. ;
Aguilar-Saavedra, J. A. ;
Ahmad, A. ;
Ahmadov, F. ;
Ahmed, W. S. ;
Ai, X. ;
Aielli, G. ;
Akatsuka, S. ;
Akesson, T. P. A. ;
Akilli, E. ;
Akimov, A., V ;
Al Khoury, K. ;
Alberghi, G. L. ;
Albert, J. ;
Verzini, M. J. Alconada ;
Alderweireldt, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alexa, C. ;
Alexopoulos, T. ;
Alfonsi, A. ;
Alfonsi, F. .
PHYSICAL REVIEW LETTERS, 2020, 125 (13)
[2]   Benchmark data and model independent event classification for the large hadron collider [J].
Aarrestad, Thea ;
van Beekveld, Melissa ;
Bona, Marcella ;
Boveia, Antonio ;
Caron, Sascha ;
Davies, Joe ;
De Simone, Andrea ;
Doglioni, Caterina ;
Duarte, Javier M. ;
Farbin, Amir ;
Gupta, Honey ;
Hendriks, Luc ;
Heinrich, Lukas A. ;
Howarth, James ;
Jawahar, Pratik ;
Jueid, Adil ;
Lastow, Jessica ;
Leinweber, Adam ;
Mamuzic, Judita ;
Merenyi, Erzsebet ;
Morandini, Alessandro ;
Moskvitina, Polina ;
Nellist, Clara ;
Ngadiuba, Jennifer ;
Ostdiek, Bryan ;
Pierini, Maurizio ;
Ravina, Baptiste ;
de Austri, Roberto R. ;
Sekmen, Sezen ;
Touranakou, Mary ;
Vaskeviciute, Marija ;
Vilalta, Ricardo ;
Vlimant, Jean-Roch ;
Verheyen, Rob ;
White, Martin ;
Wulff, Eric ;
Wallin, Erik ;
Wozniak, Kinga A. ;
Zhang, Zhongyi .
SCIPOST PHYSICS, 2022, 12 (01)
[3]  
Abul Hayat M, 2021, Arxiv, DOI arXiv:2101.04293
[4]  
Pol AA, 2020, Arxiv, DOI arXiv:2010.05531
[5]   Tag N' Train: a technique to train improved classifiers on unlabeled data [J].
Amram, Oz ;
Suarez, Cristina Mantilla .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
[6]   Simulation assisted likelihood-free anomaly detection [J].
Andreassen, Anders ;
Nachman, Benjamin ;
Shih, David .
PHYSICAL REVIEW D, 2020, 101 (09)
[7]  
[Anonymous], 2014, ATLAS-CONF-2014-006
[8]   IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection [J].
Atkinson, Oliver ;
Bhardwaj, Akanksha ;
Englert, Christoph ;
Konar, Partha ;
Ngairangbam, Vishal S. S. ;
Spannowsky, Michael .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
[9]   Anomaly detection with convolutional Graph Neural Networks [J].
Atkinson, Oliver ;
Bhardwaj, Akanksha ;
Englert, Christoph ;
Ngairangbam, Vishal S. ;
Spannowsky, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
[10]   Unsupervised hadronic SUEP at the LHC [J].
Barron, Jared ;
Curtin, David ;
Kasieczka, Gregor ;
Plehn, Tilman ;
Spourdalakis, Aris .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)