Tuning Lattice Strain of Copper Particles in Cu/ZnO/Al2O3 Catalysts for Methanol Steam Reforming

被引:6
作者
Cheng, Zaizhe [1 ]
Wang, Mingyuan [1 ]
Jiang, Chuan [1 ]
Zhang, Lin [1 ]
He, Xianglei [1 ]
Sun, Xiucheng [1 ]
Lan, Guojun [1 ]
Qiu, Yiyang [1 ]
Li, Ying [1 ]
机构
[1] Zhejiang Univ Technol, Inst Ind Catalysis, Coll Chem Engn, State Key Lab Green Chem Synth Technol, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
CU-ZNO SYNERGY; HYDROGEN-PRODUCTION; CO2; HYDROGENATION; THERMAL-DECOMPOSITION; NANOPARTICLES; DESIGN; PROMOTION; STORAGE; SITES;
D O I
10.1021/acs.energyfuels.4c02617
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As a hydrogen carrier, methanol can be utilized to provide on-site hydrogen for fuel cells via a methanol steam reforming (MSR) reaction. The ternary Cu/ZnO/Al2O3 catalyst presents outstanding catalytic activity and excellent CO2 selectivity (>97%). The defects in the copper lattice (e.g., stacking fault or twinning), which are usually accompanied by microstrain, constitute the highly active sites in the Cu/ZnO/Al2O3 catalyst. However, the strategies to rationally tune the lattice strain are still limited. Herein, we reported a facile approach to regulate the Cu lattice strain with various organic acids via the mechanochemical method. In the meanwhile, we developed a method to quantify the microstrain in the Cu lattice combining X-ray diffraction (XRD) and N2O titration techniques. The catalyst with abundant microstrain presents a superior turnover frequency value of 691 h(-1), and the correlation between turnover frequency and lattice strain proves the dominant role of defects of Cu particles in improving the catalytic performance. This insight into the lattice strain in Cu/ZnO/Al2O3 offers an alternative approach to synthesize highly efficient catalysts with abundant defects in the Cu lattice.
引用
收藏
页码:15611 / 15621
页数:11
相关论文
共 58 条
[1]   Hydrogen production, storage, transportation and key challenges with applications: A review [J].
Abdalla, Abdalla M. ;
Hossain, Shahzad ;
Nisfindy, Ozzan B. ;
Azad, Atia T. ;
Dawood, Mohamed ;
Azad, Abul K. .
ENERGY CONVERSION AND MANAGEMENT, 2018, 165 :602-627
[2]   Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO2 [J].
An, Bing ;
Zhang, Jingzheng ;
Cheng, Kang ;
Ji, Pengfei ;
Wang, Cheng ;
Lin, Wenbin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (10) :3834-3840
[3]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[4]   The Potential of Microstructural Optimization in Metal/Oxide Catalysts: Higher Intrinsic Activity of Copper by Partial Embedding of Copper Nanoparticles [J].
Behrens, Malte ;
Furche, Andreas ;
Kasatkin, Igor ;
Trunschke, Annette ;
Busser, Wilma ;
Muhler, Martin ;
Kniep, Benjamin ;
Fischer, Richard ;
Schloegl, Robert .
CHEMCATCHEM, 2010, 2 (07) :816-818
[5]   Design and preparation of high-surface-area Cu/ZnO/Al2O3 catalysts using a modified co-precipitation method for the water-gas shift reaction [J].
Budiman, Adeline ;
Ridwan, Muhammad ;
Kim, Sung Min ;
Choi, Jae-Wook ;
Yoon, Chang Won ;
Ha, Jeong-Myeong ;
Suh, Dong Jin ;
Suh, Young-Woong .
APPLIED CATALYSIS A-GENERAL, 2013, 462 :220-226
[6]   Effect of Different Chelating Agents on the Physicochemical Properties of Cu/ZnO Catalysts for Low-temperature Methanol Synthesis from Syngas Containing CO2 [J].
Chen, Fei ;
Gao, Weizhe ;
Zhang, Baizhang ;
Zhao, Heng ;
Xiao, Liwei ;
Araki, Yuya ;
Yong, Xiaojing ;
Zhang, Wei ;
Zhao, Tiejian ;
Guo, Zhongshan ;
He, Yingluo ;
Zhang, Peipei ;
Tsubaki, Noritatsu .
JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2021, 64 (05) :245-255
[7]   Structure-Performance Correlations over Cu/ZnO Interface for Low-Temperature Methanol Synthesis from Syngas Containing CO2 [J].
Chen, Fei ;
Zhang, Peipei ;
Xiao, Liwei ;
Liang, Jiaming ;
Zhang, Baizhang ;
Zhao, Heng ;
Kosol, Rungtiwa ;
Ma, Qingxiang ;
Chen, Jienan ;
Peng, Xiaobo ;
Yang, Guohui ;
Tsubaki, Noritatsu .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (07) :8191-8205
[8]   Vapor-phase low-temperature methanol synthesis from CO2-containing syngas via self-catalysis of methanol and Cu/ZnO catalysts prepared by solid-state method [J].
Chen, Fei ;
Zhang, Peipei ;
Zeng, Yan ;
Kosol, Rungtiwa ;
Xiao, Liwei ;
Feng, Xiaobo ;
Li, Jie ;
Liu, Guangbo ;
Wu, Jinhu ;
Yang, Guohui ;
Yoneyama, Yoshiharu ;
Tsubaki, Noritatsu .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 279
[9]   Design Issues of Thermally Integrated Methanol Reforming Systems for the Production of Hydrogen: Effects of Channel Dimensions and Catalyst Properties [J].
Chen, Junjie ;
Li, Tengfei .
ENERGY & FUELS, 2019, 33 (11) :12026-12040
[10]   One-pot fabrication of an efficient 3D porous SiC based monolithic catalyst for methanol steam reforming via a carbon encapsulation strategy [J].
Cheng, Zaizhe ;
He, Lingjie ;
Sun, Xiucheng ;
Li, Yunzhi ;
He, Xianglei ;
Lan, Guojun ;
Qiu, Yiyang ;
Li, Ying .
CHEMICAL ENGINEERING JOURNAL, 2024, 488