Preparation of hard carbon-coated and metal-modified silicon anode materials for lithium-ion batteries

被引:0
作者
Chen, Feiyang [1 ]
Chen, Jun [1 ]
Xu, Guojun [1 ,2 ]
Jin, Chenxin [1 ,2 ]
Ma, Haoqiang [1 ]
Wen, Lijun [1 ]
Tu, Chuanbin [1 ]
Sun, Fugen [1 ]
Li, Yong [3 ]
Li, Hui [4 ]
Zhou, Lang [1 ,2 ]
Yue, Zhihao [1 ,2 ]
机构
[1] Nanchang Univ, Inst Photovolta, Nanchang 330031, Peoples R China
[2] NCU GQC Inst PV HE ES Technol, Shanghai 332020, Peoples R China
[3] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[4] Farasis Energy Co Ltd, Ganzhou 341000, Peoples R China
关键词
Carbon coating; Silicon anode; Lithium-ion batteries; Metal modification; COMPOSITE; PERFORMANCE; ELECTRODES; ENERGY;
D O I
10.1007/s11581-024-05870-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-capacity silicon anode is one of the ideal anode materials for the next generation, but the volume expansion effect and low conductivity hinder its development. In this study, a simple and low-cost method was employed to prepare micron-sized silicon raw materials. Subsequently, a hard carbon-coated structure was combined with the metal modification method to successfully prepare hard carbon-coated silver-modified silicon particle material. Due to the hard carbon coating structure, Si/Ag@HC materials can effectively alleviate the volume expansion of silicon, and the modification of metallic silver can not only improve the conductivity of silicon, but also further enhance the ability to limit the volume expansion effect. The Si/Ag@HC maintains a specific capacity of 997.05 mAh g-1 after 200 cycles at a current density of 0.5C, and it also shows an excellent rate performance of over 600 mAh g-1 at a current density of 2C.
引用
收藏
页码:7861 / 7868
页数:8
相关论文
共 50 条
  • [21] Facile synthesis of carbon-coated SiO/Cu composite as superior anode for lithium-ion batteries
    Xu, Tao
    Zhang, Jian
    Yang, Chengyun
    Luo, Haibo
    Xia, Baojia
    Xie, Xiaohua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 738 : 323 - 330
  • [22] Effects of calcination on the preparation of carbon-coated SnO2/graphene as anode material for lithium-ion batteries
    Wu, Guiliang
    Li, Zhongtao
    Wu, Wenting
    Wu, Mingbo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 : 582 - 587
  • [23] Silicon/carbon nanocomposites used as anode materials for lithium-ion batteries
    Yong, Yingqiong
    Fan, Li-Zhen
    IONICS, 2013, 19 (11) : 1545 - 1549
  • [24] Carbon-coated ZnS composites for lithium-ion battery anode materials
    Ansong Wang
    Xiujuan Chen
    Guoyun Yu
    Youliang Wang
    Ionics, 2021, 27 : 541 - 550
  • [25] Carbon-coated hierarchically porous silicon as anode material for lithium ion batteries
    Shen, Lanyao
    Wang, Zhaoxiang
    Chen, Liquan
    RSC ADVANCES, 2014, 4 (29) : 15314 - 15318
  • [26] Porous carbon-coated silicon composites for high performance lithium-ion batterie anode
    Wang, Duo
    Kong, Lingyu
    Zhang, Fang
    Liu, Aimin
    Huang, Haitao
    Liu, Yubao
    Shi, Zhongning
    APPLIED SURFACE SCIENCE, 2024, 661
  • [27] Carbon-coated ZnS composites for lithium-ion battery anode materials
    Wang, Ansong
    Chen, Xiujuan
    Yu, Guoyun
    Wang, Youliang
    IONICS, 2021, 27 (02) : 541 - 550
  • [28] Carbon-Coated FeS as an Anode for Lithium Ion Batteries
    Dong, Chenchu
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (15) : 8275 - 8277
  • [29] Carbon-coated Si-Cu/graphite Composite as Anode Material for Lithium-ion Batteries
    Wang, Pu
    NuLi, Yanna
    Yang, Jun
    Zheng, Ying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2006, 1 (03): : 122 - 129
  • [30] Research Progress of Spherical Si-based Carbon-coated Anode Materials for Lithium-ion Batteries
    Li, Donglin
    Yang, Wanliang
    Cao, Rui
    Yang, Xue
    Xu, Meisong
    Cailiao Daobao/Materials Reports, 2024, 38 (21):