Estimating lumbar bone mineral density from conventional MRI and radiographs with deep learning in spine patients

被引:3
作者
Galbusera, Fabio [1 ]
Cina, Andrea [1 ,2 ]
O'Riordan, Dave [1 ]
Vitale, Jacopo A. [1 ]
Loibl, Markus [1 ]
Fekete, Tamas F. [1 ]
Kleinstueck, Frank [1 ]
Haschtmann, Daniel [1 ]
Mannion, Anne F. [1 ]
机构
[1] Schulthess Clin, Dept Teaching Res & Dev, Lengghalde 2, CH-8008 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Hlth Sci & Technol D HEST, Zurich, Switzerland
关键词
Deep learning; Bone mineral density; Opportunistic screening; Osteoporosis; MRI; Lumbar radiograph; DEXA; COMPUTED-TOMOGRAPHY; OSTEOPOROSIS;
D O I
10.1007/s00586-024-08463-8
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
PurposeThis study aimed to develop machine learning methods to estimate bone mineral density and detect osteopenia/osteoporosis from conventional lumbar MRI (T1-weighted and T2-weighted images) and planar radiography in combination with clinical data and imaging parameters of the acquisition protocol.MethodsA database of 429 patients subjected to lumbar MRI, radiographs and dual-energy x-ray absorptiometry within 6 months was created from an institutional database. Several machine learning models were trained and tested (373 patients for training, 86 for testing) with the following objectives: (1) direct estimation of the vertebral bone mineral density; (2) classification of T-score lower than - 1 or (3) lower than - 2.5. The models took as inputs either the images or radiomics features derived from them, alone or in combination with metadata (age, sex, body size, vertebral level, parameters of the imaging protocol).ResultsThe best-performing models achieved mean absolute errors of 0.15-0.16 g/cm2 for the direct estimation of bone mineral density, and areas under the receiver operating characteristic curve of 0.82 (MRIs) - 0.80 (radiographs) for the classification of T-scores lower than - 1, and 0.80 (MRIs) - 0.65 (radiographs) for T-scores lower than - 2.5.ConclusionsThe models showed good discriminative performances in detecting cases of low bone mineral density, and more limited capabilities for the direct estimation of its value. Being based on routine imaging and readily available data, such models are promising tools to retrospectively analyse existing datasets as well as for the opportunistic investigation of bone disorders.
引用
收藏
页码:4092 / 4103
页数:12
相关论文
共 39 条
[21]   Prediction of osteoporosis using MRI and CT scans with unimodal and multimodal deep-learning models [J].
Kucukciloglu, Yasemin ;
Sekeroglu, Boran ;
Adali, Terin ;
Senturk, Niyazi .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2024, 30 (01) :9-20
[22]   Opportunistic QCT Bone Mineral Density Measurements Predicting Osteoporotic Fractures: A Use Case in a Prospective Clinical Cohort [J].
Leonhardt, Yannik ;
May, Pauline ;
Gordijenko, Olga ;
Koeppen-Ursic, Veronika A. ;
Brandhorst, Henrike ;
Zimmer, Claus ;
Makowski, Marcus R. ;
Baum, Thomas ;
Kirschke, Jan S. ;
Gersing, Alexandra S. ;
Seifert-Klauss, Vanadin ;
Schwaiger, Benedikt J. .
FRONTIERS IN ENDOCRINOLOGY, 2020, 11
[23]   Assessment of bone density using the 1.5 T or 3.0 T MRI based vertebral bone quality score in older patients undergoing spine surgery: does field strength matter? [J].
Lin, Wentao ;
He, Chaoqin ;
Xie, Faqin ;
Chen, Tao ;
Zheng, Guanghao ;
Yin, Houjie ;
Chen, Haixiong ;
Wang, Zhiyun .
SPINE JOURNAL, 2023, 23 (08) :1172-1181
[24]   Vertebral bone quality different in magnetic resonance imaging parameters [J].
Liu, Xiang-Ge ;
Chen, Xin ;
Chen, Biao ;
Liang, Pei-Jie ;
Liu, Han-Hui ;
Fu, Meiqi .
JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2023, 18 (01)
[25]   From Estrogen-Centric to Aging and Oxidative Stress: A Revised Perspective of the Pathogenesis of Osteoporosis [J].
Manolagas, Stavros C. .
ENDOCRINE REVIEWS, 2010, 31 (03) :266-300
[26]   Deep learning for screening primary osteopenia and osteoporosis using spine radiographs and patient clinical covariates in a Chinese population [J].
Mao, Liting ;
Xia, Ziqiang ;
Pan, Liang ;
Chen, Jun ;
Liu, Xian ;
Li, Zhiqiang ;
Yan, Zhaoxian ;
Lin, Gengbin ;
Wen, Huisen ;
Liu, Bo .
FRONTIERS IN ENDOCRINOLOGY, 2022, 13
[27]   Structural determinants of vertebral fracture risk [J].
Melton, L. Joseph, III ;
Riggs, B. Lawrence ;
Keaveny, Tony M. ;
Achenbach, Sara J. ;
Hoffmann, Paul F. ;
Camp, Jon J. ;
Rouleau, Peggy A. ;
Bouxsein, Mary L. ;
Amin, Shreyasee ;
Atkinson, Elizabeth J. ;
Robb, Richard A. ;
Khosla, Sundeep .
JOURNAL OF BONE AND MINERAL RESEARCH, 2007, 22 (12) :1885-1892
[28]   Evaluation of deep learning-based quantitative computed tomography for opportunistic osteoporosis screening [J].
Oh, Sangseok ;
Kang, Woo Young ;
Park, Heejun ;
Yang, Zepa ;
Lee, Jemyoung ;
Kim, Changwon ;
Woo, Ok Hee ;
Hong, Suk-Joo .
SCIENTIFIC REPORTS, 2024, 14 (01)
[29]   Artificial Intelligence Applications for Osteoporosis Classification Using Computed Tomography [J].
Ong, Wilson ;
Liu, Ren Wei ;
Makmur, Andrew ;
Low, Xi Zhen ;
Sng, Weizhong Jonathan ;
Tan, Jiong Hao ;
Kumar, Naresh ;
Hallinan, James Thomas Patrick Decourcy .
BIOENGINEERING-BASEL, 2023, 10 (12)
[30]   Osteoporosis, genetics and hormones [J].
Rizzoli, R ;
Bonjour, JP ;
Ferrari, SL .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2001, 26 (02) :79-94