Estimating lumbar bone mineral density from conventional MRI and radiographs with deep learning in spine patients

被引:3
作者
Galbusera, Fabio [1 ]
Cina, Andrea [1 ,2 ]
O'Riordan, Dave [1 ]
Vitale, Jacopo A. [1 ]
Loibl, Markus [1 ]
Fekete, Tamas F. [1 ]
Kleinstueck, Frank [1 ]
Haschtmann, Daniel [1 ]
Mannion, Anne F. [1 ]
机构
[1] Schulthess Clin, Dept Teaching Res & Dev, Lengghalde 2, CH-8008 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Hlth Sci & Technol D HEST, Zurich, Switzerland
关键词
Deep learning; Bone mineral density; Opportunistic screening; Osteoporosis; MRI; Lumbar radiograph; DEXA; COMPUTED-TOMOGRAPHY; OSTEOPOROSIS;
D O I
10.1007/s00586-024-08463-8
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
PurposeThis study aimed to develop machine learning methods to estimate bone mineral density and detect osteopenia/osteoporosis from conventional lumbar MRI (T1-weighted and T2-weighted images) and planar radiography in combination with clinical data and imaging parameters of the acquisition protocol.MethodsA database of 429 patients subjected to lumbar MRI, radiographs and dual-energy x-ray absorptiometry within 6 months was created from an institutional database. Several machine learning models were trained and tested (373 patients for training, 86 for testing) with the following objectives: (1) direct estimation of the vertebral bone mineral density; (2) classification of T-score lower than - 1 or (3) lower than - 2.5. The models took as inputs either the images or radiomics features derived from them, alone or in combination with metadata (age, sex, body size, vertebral level, parameters of the imaging protocol).ResultsThe best-performing models achieved mean absolute errors of 0.15-0.16 g/cm2 for the direct estimation of bone mineral density, and areas under the receiver operating characteristic curve of 0.82 (MRIs) - 0.80 (radiographs) for the classification of T-scores lower than - 1, and 0.80 (MRIs) - 0.65 (radiographs) for T-scores lower than - 2.5.ConclusionsThe models showed good discriminative performances in detecting cases of low bone mineral density, and more limited capabilities for the direct estimation of its value. Being based on routine imaging and readily available data, such models are promising tools to retrospectively analyse existing datasets as well as for the opportunistic investigation of bone disorders.
引用
收藏
页码:4092 / 4103
页数:12
相关论文
共 39 条
[1]   Zero Echo Time Musculoskeletal MRI: Technique, Optimization, Applications, and Pitfalls [J].
Aydingoez, Uestuen ;
Yildiz, Adalet Elcin ;
Ergen, Bilge .
RADIOGRAPHICS, 2022, 42 (05) :1398-1414
[2]   Quantitative Ultrashort Echo Time (UTE) MRI of Human Cortical Bone: Correlation With Porosity and Biomechanical Properties [J].
Bae, Won C. ;
Chen, Peter C. ;
Chung, Christine B. ;
Masuda, Koichi ;
D'Lima, Darryl ;
Du, Jiang .
JOURNAL OF BONE AND MINERAL RESEARCH, 2012, 27 (04) :848-857
[3]   Automated assessment of exclusion criteria for DXA lumbar spine scans [J].
Barden, HS ;
Markwardt, P ;
Payne, R ;
Hawkins, B ;
Frank, M ;
Faulkner, KG .
JOURNAL OF CLINICAL DENSITOMETRY, 2003, 6 (04) :401-409
[4]   The clinical role of dual energy X-ray absorptiometry [J].
Blake, Glen M. ;
Fogelman, Ignac .
EUROPEAN JOURNAL OF RADIOLOGY, 2009, 71 (03) :406-414
[5]   Quantitative computed tomography and opportunistic bone density screening by dual use of computed tomography scans [J].
Brett, Alan D. ;
Brown, J. Keenan .
JOURNAL OF ORTHOPAEDIC TRANSLATION, 2015, 3 (04) :178-184
[6]   Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis [J].
Cheng, Karen Y. Y. ;
Moazamian, Dina ;
Ma, Yajun ;
Jang, Hyungseok ;
Jerban, Saeed ;
Du, Jiang ;
Chung, Christine B. B. .
SKELETAL RADIOLOGY, 2023, 52 (11) :2149-2157
[7]   2-step deep learning model for landmarks localization in spine radiographs [J].
Cina, Andrea ;
Bassani, Tito ;
Panico, Matteo ;
Luca, Andrea ;
Masharawi, Youssef ;
Brayda-Bruno, Marco ;
Galbusera, Fabio .
SCIENTIFIC REPORTS, 2021, 11 (01)
[8]  
Cohen HJ, 2000, FOOD CHEM TOXICOL, V38, P237, DOI 10.1016/S0278-6915(99)00145-3
[9]   Vertebral bone quality score predicts fragility fractures independently of bone mineral density [J].
Ehresman, Jeff ;
Schilling, Andrew ;
Yang, Xinghai ;
Pennington, Zach ;
Ahmed, Ali Karim ;
Cottrill, Ethan ;
Lubelski, Daniel ;
Khan, Majid ;
Moseley, Kendall F. ;
Sciubba, Daniel M. .
SPINE JOURNAL, 2021, 21 (01) :20-27
[10]   Novel MRI-based score for assessment of bone density in operative spine patients [J].
Ehresman, Jeff ;
Pennington, Zach ;
Schilling, Andrew ;
Lubelski, Daniel ;
Ahmed, A. Karim ;
Cottrill, Ethan ;
Khan, Majid ;
Sciubba, Daniel M. .
SPINE JOURNAL, 2020, 20 (04) :556-562