Explainable AI for Mixed Data Clustering

被引:0
作者
Amling, Jonas [2 ]
Scheele, Stephan [1 ]
Slany, Emanuel [3 ]
Lang, Moritz [2 ]
Schmid, Ute [1 ]
机构
[1] Univ Bamberg, Bamberg, Germany
[2] Dab Daten Anal & Beratung GmbH, Deggendorf, Germany
[3] Fraunhofer Inst Integrated Circuits IIS, Erlangen, Germany
来源
EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT II, XAI 2024 | 2024年 / 2154卷
关键词
XAI; Mixed Data Clustering; Model-Agnostic;
D O I
10.1007/978-3-031-63797-1_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering, an unsupervised machine learning approach, aims to find groups of similar instances. Mixed data clustering is of particular interest since real-life data often consists of diverse data types. The unsupervised nature of clustering emphasizes the need to understand the criteria for defining and distinguishing clusters. Current explainable AI (XAI) methods for clustering focus on intrinsically explainable clustering techniques, surrogate model-based explanations utilizing established XAI frameworks, and explanations generated from inter-instance distances. However, there exists a research gap in developing post-hoc methods that directly explain clusterings without resorting to surrogate models or requiring prior knowledge about the clustering algorithm. Addressing this gap, our work introduces a model-agnostic, entropy-based Feature Importance Score for continuous and discrete data, offering direct and comprehensible explanations by highlighting key features, deriving rules, and identifying cluster prototypes. The comparison with existing XAI frameworks like SHAP and ClAMP shows that we achieve similar fidelity and simplicity, proving that mixed data clusterings can be effectively explained solely from the distributions of the features and assigned clusters, making complex clusterings comprehensible to humans.
引用
收藏
页码:42 / 62
页数:21
相关论文
共 40 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]  
Arya V, 2019, Arxiv, DOI arXiv:1909.03012
[3]   How to find a good explanation for clustering? [J].
Bandyapadhyay, Sayan ;
Fomin, Fedor, V ;
Golovach, Petr A. ;
Lochet, William ;
Purohit, Nidhi ;
Simonov, Kirill .
ARTIFICIAL INTELLIGENCE, 2023, 322
[4]   Interpretable clustering: an optimization approach [J].
Bertsimas, Dimitris ;
Orfanoudaki, Agni ;
Wiberg, Holly .
MACHINE LEARNING, 2021, 110 (01) :89-138
[5]  
Bobek S, 2024, Arxiv, DOI arXiv:2310.14894
[6]   Enhancing Cluster Analysis With Explainable AI and Multidimensional Cluster Prototypes [J].
Bobek, Szymon ;
Kuk, Michal ;
Szelazek, Maciej ;
Nalepa, Grzegorz J. .
IEEE ACCESS, 2022, 10 :101556-101574
[7]   Interpreting clusters via prototype optimization [J].
Carrizosa, Emilio ;
Kurishchenko, Kseniia ;
Marin, Alfredo ;
Morales, Dolores Romero .
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2022, 107
[8]  
Davidson I, 2022, Arxiv, DOI arXiv:2209.09670
[9]  
De Raedt L., 1997, Inductive Logic Programming. 7th International Workshop, ILP-97 Proceedings, P133
[10]  
Ellis CA, 2021, Arxiv, DOI arXiv:2105.08053