Local Enhanced Transformer Networks for Land Cover Classification With Airborne Multispectral LiDAR Data

被引:0
作者
Li, Dilong [1 ]
Zheng, Shenghong [1 ]
Chen, Ziyi [1 ]
Li, Jonathon [2 ]
Wang, Lanying
Du, Jixiang [1 ]
机构
[1] Huaqiao Univ, Fujian Key Lab Big Data Intelligence & Secur, Xiamen Key Lab Comp Vis & Pattern Recognit, Xiamen Key Lab Data Secur & Blockchain Technol,Col, Xiamen 361021, Peoples R China
[2] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金;
关键词
Encoding; Point cloud compression; Semantics; Three-dimensional displays; Laser radar; Land surface; Feature extraction; Airborne multispectral LiDAR; land cover classification; Transformer;
D O I
10.1109/LGRS.2024.3432870
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Transformer networks have demonstrated remarkable performance in point cloud processing tasks. However, balancing local feature aggregation with long-range dependency modeling remains a challenging issue. In this work, we present a local enhanced Transformer network (LETNet) for land cover classification with multispectral LiDAR data. Specifically, we first rethink position encoding in 3-D Transformers and design a novel feature encoding module that embeds comprehensive geometric and semantic information, serving a similar purpose. Then, the proposed local enhanced Transformer module is used to capture the accurate global attention weights and refine the features. Finally, to effectively extract and integrate global features across various scales, an attention-based pooling module is introduced. This module extracts global features from each encoder and decoder layer and constructs a feature pyramid to fuse these multiscale global features. Both quantitative assessments and comparative analyses demonstrate the competitive capability and advanced performance of the LETNet in land cover classification task.
引用
收藏
页数:5
相关论文
共 25 条
[1]   TESTING OF LAND COVER CLASSIFICATION FROM MULTISPECTRAL AIRBORNE LASER SCANNING DATA [J].
Bakula, K. ;
Kupidura, P. ;
Jelowicki, L. .
XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7) :161-169
[2]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[3]   The farthest point strategy for progressive image sampling [J].
Eldar, Y ;
Lindenbaum, M ;
Porat, M ;
Zeevi, YY .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (09) :1305-1315
[4]   LFT-Net: Local Feature Transformer Network for Point Clouds Analysis [J].
Gao, Yongbin ;
Liu, Xuebing ;
Li, Jun ;
Fang, Zhijun ;
Jiang, Xiaoyan ;
Huq, Kazi Mohammed Saidul .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) :2158-2168
[5]   Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification [J].
Gong, Wei ;
Sun, Jia ;
Shi, Shuo ;
Yang, Jian ;
Du, Lin ;
Zhu, Bo ;
Song, Shalei .
SENSORS, 2015, 15 (09) :21989-22002
[6]   PCT: Point cloud transformer [J].
Guo, Meng-Hao ;
Cai, Jun-Xiong ;
Liu, Zheng-Ning ;
Mu, Tai-Jiang ;
Martin, Ralph R. ;
Hu, Shi-Min .
COMPUTATIONAL VISUAL MEDIA, 2021, 7 (02) :187-199
[7]   Stratified Transformer for 3D Point Cloud Segmentation [J].
Lai, Xin ;
Liu, Jianhui ;
Jiang, Li ;
Wang, Liwei ;
Zhao, Hengshuang ;
Liu, Shu ;
Qi, Xiaojuan ;
Jia, Jiaya .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :8490-8499
[8]   AGFP-Net: Attentive geometric feature pyramid network for land cover classification using airborne multispectral LiDAR data [J].
Li, Dilong ;
Shen, Xin ;
Guan, Haiyan ;
Yu, Yongtao ;
Wang, Hanyun ;
Zhang, Guo ;
Li, Jonathan ;
Li, Deren .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
[9]   Building Extraction from Airborne Multi-Spectral LiDAR Point Clouds Based on Graph Geometric Moments Convolutional Neural Networks [J].
Li, Dilong ;
Shen, Xin ;
Yu, Yongtao ;
Guan, Haiyan ;
Li, Jonathan ;
Zhang, Guo ;
Li, Deren .
REMOTE SENSING, 2020, 12 (19) :1-24
[10]  
Li Y., 2018, P ADV NEURAL INFORM, P828