MXene (Ti3C2Tx)/Rh-doped SnO2 composites for improved acetone sensing properties

被引:1
|
作者
Jia, Jianing [1 ]
Deng, Weifeng [1 ]
Zhang, Haiming [1 ]
Yan, Xirui [1 ]
Ma, Kefan [1 ]
Zhou, Changhong [1 ]
Cao, Huanhuan [1 ]
Jia, Xiaomin [1 ]
Liu, Sinan [1 ]
机构
[1] Tiangong Univ, Sch Phys Sci & Technol, Tianjin 300387, Peoples R China
关键词
MXene; Rh-doped SnO 2 nanofibers; Acetone detection; Composites; GAS SENSOR; TI3C2TX MXENE; NANOFIBERS; WORKING; ADSORPTION; NO2; CO;
D O I
10.1016/j.ceramint.2024.07.262
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Rh-doped SnO2 nanofibers have demonstrated high selectivity and response in detecting acetone. However, these nanofibers operated at high temperature and exhibited a long recovery time. In this study, a two-dimensional material MXene was introduced into Rh-doped SnO2 nanofibers, and MXene (Ti3C2Tx)/Rh-SnO2 composites were synthesized via hydrothermal method. The morphology, structure and composition of MXene (Ti3C2Tx)/ Rh-SnO2 were systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Brunauer-EmmettTeller techniques (BET). The results indicated that MXene (Ti3C2Tx)/Rh-SnO2 composites formed compact heterostructures. The effects of adding different volumes (0.5, 1, 1.5, and 2 ml) of 5 mg/ml MXene on the sensing properties of the composites were investigated. The sensing results showed that the composite of (1 ml) MXene (Ti3C2Tx)/Rh-SnO2 achieved a response as high as 82.46% to 100 ppm acetone gas at 100 degrees C and exhibited rapid response and recovery times of 3/8 s, compared to the optimal operating temperature (190 degrees C) and recovery time (43 s) observed with the pristine Rh-doped SnO2 nanofibers, there is a significant improvement. It also demonstrated outstanding humidity resistance and a minimum detection limit of 0.6 ppm. Moreover, the addition of MXene not only significantly affects the sensing performance of the pristine Rh-doped SnO2 nanofibers but also preserves its sensing advantages. The sensing mechanism of the MXene (Ti3C2Tx)/Rh-SnO2 composites is also discussed. Herein, MXene (Ti3C2Tx)/Rh-SnO2 composites presents a feasible strategy for enhancing the sensing properties of gas sensors.
引用
收藏
页码:38970 / 38980
页数:11
相关论文
共 50 条
  • [41] MXene defect engineering for optimizing the mechanical properties of Ti3C2TX/ZK61 composites
    Ye, Li
    Mei, Xu
    Tang, Zhen
    Liu, Beibei
    Xu, Shuo
    Zheng, He
    Jianfeng, Wang
    Guan, Shaokang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 919
  • [42] Versatile Ti3C2Tx MXene for free-radical scavenging
    Liu, Jiang
    Lu, Wei
    Lu, Xifeng
    Zhang, Lu
    Dong, Haifeng
    Li, Yingchun
    NANO RESEARCH, 2022, 15 (03) : 2558 - 2566
  • [43] Preparation of Ti3C2Tx/NiZn Ferrite Hybrids with Improved Electromagnetic Properties
    Zhou, Xiaobing
    Li, Youbing
    Huang, Qing
    MATERIALS, 2020, 13 (04)
  • [44] Ti3C2Tx MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives
    Cai, Yanqing
    Chen, Xinggang
    Xu, Ying
    Zhang, Yalin
    Liu, Huijun
    Zhang, Hongjuan
    Tang, Jing
    CARBON ENERGY, 2024, 6 (02)
  • [45] Heating of Ti3C2Tx MXene/polymer composites in response to Radio Frequency fields
    Habib, Touseef
    Patil, Nutan
    Zhao, Xiaofei
    Prehn, Evan
    Anas, Muhammad
    Lutkenhaus, Jodie L.
    Radovic, Miladin
    Green, Micah J.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [46] In situ oxygen doped Ti3C2Tx MXene flexible film as supercapacitor electrode
    Tian, Yapeng
    Ju, Maomao
    Luo, Yijia
    Bin, Xiaoqing
    Lou, Xiaojie
    Que, Wenxiu
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [47] Layer-dependent frictional properties of Ti3C2Tx MXene nanosheets
    Pendyala, Prashant
    Lee, Juyun
    Kim, Seon Joon
    Yoon, Eui-Sung
    APPLIED SURFACE SCIENCE, 2022, 603
  • [48] When MXene (Ti3C2Tx) meet Ti/PbO2: An improved electrocatalytic activity and stability
    Man, Shuaishuai
    Luo, Dehui
    Sun, Qing
    Yang, Haifeng
    Bao, Hebin
    Xu, Ke
    Zeng, Xuzhong
    He, Miao
    Yin, Zehao
    Wang, Li
    Mo, Zhihong
    Yang, Wenjing
    Li, Xueming
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 430
  • [49] Gas sensing performance of Ti3C2Tx MXene heterojunction structures in greenhouse environments: a mini review
    Zhang, Haoming
    Xu, Hongyu
    Zeng, Wen
    Wang, Zhongchang
    Zhou, Qu
    FRONTIERS IN CHEMISTRY, 2024, 12
  • [50] Effect of morphology and structure of MXene Ti3C2Tx on mechanical, thermal properties of PEEK nanocomposite
    Li, Haonan
    Wang, Libo
    Hou, Suhang
    Xie, Jian
    Li, Zhenhao
    Hu, Qianku
    Zhou, Aiguo
    Liu, Xuqing
    CARBON, 2024, 228