MXene (Ti3C2Tx)/Rh-doped SnO2 composites for improved acetone sensing properties

被引:1
|
作者
Jia, Jianing [1 ]
Deng, Weifeng [1 ]
Zhang, Haiming [1 ]
Yan, Xirui [1 ]
Ma, Kefan [1 ]
Zhou, Changhong [1 ]
Cao, Huanhuan [1 ]
Jia, Xiaomin [1 ]
Liu, Sinan [1 ]
机构
[1] Tiangong Univ, Sch Phys Sci & Technol, Tianjin 300387, Peoples R China
关键词
MXene; Rh-doped SnO 2 nanofibers; Acetone detection; Composites; GAS SENSOR; TI3C2TX MXENE; NANOFIBERS; WORKING; ADSORPTION; NO2; CO;
D O I
10.1016/j.ceramint.2024.07.262
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Rh-doped SnO2 nanofibers have demonstrated high selectivity and response in detecting acetone. However, these nanofibers operated at high temperature and exhibited a long recovery time. In this study, a two-dimensional material MXene was introduced into Rh-doped SnO2 nanofibers, and MXene (Ti3C2Tx)/Rh-SnO2 composites were synthesized via hydrothermal method. The morphology, structure and composition of MXene (Ti3C2Tx)/ Rh-SnO2 were systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Brunauer-EmmettTeller techniques (BET). The results indicated that MXene (Ti3C2Tx)/Rh-SnO2 composites formed compact heterostructures. The effects of adding different volumes (0.5, 1, 1.5, and 2 ml) of 5 mg/ml MXene on the sensing properties of the composites were investigated. The sensing results showed that the composite of (1 ml) MXene (Ti3C2Tx)/Rh-SnO2 achieved a response as high as 82.46% to 100 ppm acetone gas at 100 degrees C and exhibited rapid response and recovery times of 3/8 s, compared to the optimal operating temperature (190 degrees C) and recovery time (43 s) observed with the pristine Rh-doped SnO2 nanofibers, there is a significant improvement. It also demonstrated outstanding humidity resistance and a minimum detection limit of 0.6 ppm. Moreover, the addition of MXene not only significantly affects the sensing performance of the pristine Rh-doped SnO2 nanofibers but also preserves its sensing advantages. The sensing mechanism of the MXene (Ti3C2Tx)/Rh-SnO2 composites is also discussed. Herein, MXene (Ti3C2Tx)/Rh-SnO2 composites presents a feasible strategy for enhancing the sensing properties of gas sensors.
引用
收藏
页码:38970 / 38980
页数:11
相关论文
共 50 条
  • [31] Multifunctional Ti3C2Tx MXene/nanospheres/Ti3C2Tx MXene/thermoplastic polyurethane electrospinning membrane inspired by bean pod structure for EMI shielding and pressure sensing
    Cheng, Haonan
    Yang, Chen
    Chu, Jiuying
    Zhou, Hengshu
    Wang, Chaoxia
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 353
  • [32] The multiple synthesis of 2D layered MXene Ti3C2Tx/Ag/Cu composites with enhanced electrochemical properties
    Zhang, Yan
    Guo, ZhiJin
    Zhou, JianPing
    Sun, DaQian
    Li, HongMei
    CERAMICS INTERNATIONAL, 2022, 48 (20) : 30524 - 30535
  • [33] Ti3C2TX MXene Nanolaminates with Ionic Additives for Enhanced Gas-Sensing Performance
    Lee, Juyun
    Kang, Yun Chan
    Koo, Chong Min
    Kim, Seon Joon
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 11997 - 12005
  • [34] Ti3C2Tx (MXene)-polyacrylamide nanocomposite films
    Naguib, Michael
    Saito, Tomonori
    Lai, Sophia
    Rager, Matthew S.
    Aytug, Tolga
    Paranthaman, M. Parans
    Zhao, Meng-Qiang
    Gogotsi, Yury
    RSC ADVANCES, 2016, 6 (76): : 72069 - 72073
  • [35] Rendering Ti3C2Tx (MXene) monolayers visible
    Miranda, A.
    Halim, J.
    Lorke, A.
    Barsoum, M. W.
    MATERIALS RESEARCH LETTERS, 2017, 5 (05): : 322 - 328
  • [36] Preparation and acetone sensing properties of Ti3C2Tx-ZnFe2O4 composites
    Bai, Yuying
    Zhang, Yin
    Chu, Xiangfeng
    He, Lifang
    Liang, Shiming
    MATERIALS LETTERS, 2023, 349
  • [37] Unlocking the Potential of Ti3C2Tx MXene: Present Trends and Future Developments of Gas Sensing
    Teli, Aviraj M.
    Mane, Sagar M.
    Mishra, Rajneesh Kumar
    Jeon, Wookhee
    Shin, Jae Cheol
    MICROMACHINES, 2025, 16 (02)
  • [38] Research article Ti3C2Tx MXene-Ag/silicone rubber composites with enhanced dielectric properties and improved mechanical properties
    Zeng, Yu
    Tang, Lu
    Xin, Zengnian
    Guo, Fangfang
    Li, Guijin
    Chen, Nan
    Du, Guoping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 930
  • [39] Room-Temperature Detection of Perfluoroisobutyronitrile with SnO2/Ti3C2TX Gas Sensors
    Wu, Peng
    Li, Yi
    Xiao, Song
    Chen, Dachang
    Chen, Junyi
    Tang, Ju
    Zhang, Xiaoxing
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (42) : 48200 - 48211
  • [40] Synergistic effects in CuO/SnO2/Ti3C2Tx nanohybrids: Unveiling their potential as supercapacitor cathode material
    Ramachandran, Tholkappiyan
    Pachamuthu, M. P.
    Karthikeyan, G.
    Hamed, Fathalla
    Rezeq, Moh'd
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 179