On representation of solutions to the heat equation

被引:1
作者
Auscher, Pascal [1 ]
Hou, Hedong [1 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
关键词
PARABOLIC CAUCHY-PROBLEMS; WELL-POSEDNESS;
D O I
10.5802/crmath.593
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a simple method to obtain semigroup representation of solutions to the heat equation using a local L-2 condition with prescribed growth and a boundedness condition within tempered distributions. This applies to many functional settings and, as an example, we consider the Koch and Tataru space related to BMO-1 initial data.
引用
收藏
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 1936, Nova Acta Soc. Sci. Upsal., IV. Ser.
[2]  
Aronson D.G., 1968, ANN SCUOLA NORM-SCI, V22, P607
[3]  
Auscher P, 2024, Arxiv, DOI arXiv:2406.15775
[4]  
Auscher P, 2024, Arxiv, DOI arXiv:2311.04844
[5]  
Auscher P, 2019, ANN SCUOLA NORM-SCI, V19, P387
[6]  
Bourbaki N., 2003, Topological Vector Spaces.
[7]   AN EXAMPLE OF NONUNIQUENESS OF THE CAUCHY-PROBLEM FOR THE HEAT-EQUATION [J].
CHUNG, SY ;
KIM, DH .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (7-8) :1257-1261
[8]  
Gushchin A.K., 1984, MATH SB, V47, P439, DOI 10.1070/SM1984v047n02ABEH002654
[9]  
Hormander Lars., 2003, CLASSICS MATH
[10]   Well-posedness for the Navier-Stokes equations [J].
Koch, H ;
Tataru, D .
ADVANCES IN MATHEMATICS, 2001, 157 (01) :22-35