Introducing novel O-fractional operators: Advances in fractional calculus

被引:8
|
作者
Sadek, Lakhlifa [1 ]
Baleanu, Dumitru [2 ,3 ]
Abdo, Mohammed S. [4 ,5 ]
Shatanawi, Wasfi [5 ,6 ,7 ]
机构
[1] Abdelmalek Essaadi Univ, Fac Sci & Technol, Dept Math, Al Hoceima, Tetouan, Morocco
[2] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[3] Inst Space Sci, Bucharest, Romania
[4] Hodeidah Univ, Dept Math, Al Hudaydah, Yemen
[5] Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[7] Hashemite Univ, Dept Math, Zarqa, Jordan
关键词
O-CFD; O-conformable fractional integrals (O-CFI); INEQUALITIES;
D O I
10.1016/j.jksus.2024.103352
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study explores the foundational iterative processes of fractional calculus, focusing on O-conformable fractional derivatives (O-CFD). We introduce novel fractional operators and define their associated function spaces. Additionally, we establish a series of theorems that enhance our understanding of these operators within the context of fractional calculus.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] FRACTIONAL OPERATORS AND THEIR COMMUTATORS ON GENERALIZED ORLICZ SPACES
    Karppinen, Arttu
    OPUSCULA MATHEMATICA, 2022, 42 (04) : 583 - 604
  • [22] BOUNDS OF AN INTEGRAL OPERATOR FOR CONVEX FUNCTIONS AND RESULTS IN FRACTIONAL CALCULUS
    Mishira, Lakshmi Narayan
    Farid, Ghulam
    Bangash, Babar Khan
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (02): : 359 - 376
  • [23] New problem of Lane Emden type via fractional calculus
    Ndiaye, Ameth
    Gouari, Yazid
    Dahmani, Zoubir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (02) : 145 - 161
  • [24] Certain Unified Integral Inequalities in Connection with Quantum Fractional Calculus
    Riahi, Latifa
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    FILOMAT, 2019, 33 (19) : 6297 - 6304
  • [25] Poisson problems involving fractional Hardy operators and measures
    Chen, Huyuan
    Gkikas, Konstantinos T.
    Nguyen, Phuoc-Tai
    NONLINEARITY, 2023, 36 (12) : 7191 - 7229
  • [26] Muckenhoupt-Wheeden conjectures for fractional integral operators
    Sawano, Yoshihiro
    Sugano, Satoko
    Tanaka, Hitoshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 456 - 463
  • [27] Boundedness of fractional integral operators in Herz spaces on the hyperplane
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (14) : 8631 - 8654
  • [28] Bounds of Riemann-Liouville fractional integral operators
    Farid, Ghulam
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 637 - 648
  • [29] Weighted Boundedness of Maximal Functions and Fractional Bergman Operators
    Sehba, Benoit F.
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 1635 - 1664
  • [30] A NOTE ON FRACTIONAL POWERS OF STRONGLY POSITIVE OPERATORS AND THEIR APPLICATIONS
    Ashyralyev, Allaberen
    Hamad, Ayman
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (02) : 302 - 325