Quantum simulation of entanglement dynamics in a quantum processor

被引:0
作者
Saavedra-Pino, Sebastian [1 ]
Inzulza, Cristian [2 ]
Roman, Pablo [2 ]
Albarran-Arriagada, Francisco [1 ,3 ]
Retamal, Juan Carlos [1 ,3 ]
机构
[1] Univ Santiago Chile USACH, Dept Fis, Ave Victor Jara 3493, Santiago 9170124, Chile
[2] Univ Santiago Chile USACH, Dept Ingn Informat, Santiago, Chile
[3] Univ Santiago Chile USACH, Ctr Dev Nanosci & Nanotechnol, Ave Victor Jara 3493, Santiago 9170124, Chile
关键词
quantum computing; quantum entanglement; open quantum systems; ADVANTAGE; STATE;
D O I
10.1088/1402-4896/ad624a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We implement a five-qubit protocol in IBM quantum processors to study entanglement dynamics in a two qubit system in the presence of a simulated environment. Specifically, two qubits represent the main system, while another two qubits serve as the environment. Additionally, we employ an auxiliary qubit to estimate the quantum entanglement. Specifically, we observe the sudden death and sudden birth of entanglement for different inital conditions that were simultaneously implemented on the IBM 127-qubit quantum processor ibm _brisbane. We obtain the quantum entanglement evolution of the main system qubits and the environment qubits averaging over N = 10 independent experiments in the same quantum device. Our experimental data shows the entanglement and disentanglement signatures in system and enviroment qubits, where the noisy nature of current quantum processors produce a shift on times signaling sudden death or sudden birth of entanglement. This work takes relevance showing the usefulness of current noisy quantum devices to test fundamental concepts in quantum information.
引用
收藏
页数:12
相关论文
共 28 条
[1]   Experimental Entanglement Redistribution under Decoherence Channels [J].
Aguilar, G. H. ;
Valdes-Hernandez, A. ;
Davidovich, L. ;
Walborn, S. P. ;
Ribeiro, P. H. Souto .
PHYSICAL REVIEW LETTERS, 2014, 113 (24)
[2]   Environment-induced sudden death of entanglement [J].
Almeida, M. P. ;
de Melo, F. ;
Hor-Meyll, M. ;
Salles, A. ;
Walborn, S. P. ;
Ribeiro, P. H. Souto ;
Davidovich, L. .
SCIENCE, 2007, 316 (5824) :579-582
[3]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[4]   Trapped-ion quantum computing: Progress and challenges [J].
Bruzewicz, Colin D. ;
Chiaverini, John ;
McConnell, Robert ;
Sage, Jeremy M. .
APPLIED PHYSICS REVIEWS, 2019, 6 (02)
[5]   Practical quantum advantage in quantum simulation [J].
Daley, Andrew J. ;
Bloch, Immanuel ;
Kokail, Christian ;
Flannigan, Stuart ;
Pearson, Natalie ;
Troyer, Matthias ;
Zoller, Peter .
NATURE, 2022, 607 (7920) :667-676
[6]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[7]   IBM Q Experience as a versatile experimental testbed for simulating open quantum systems [J].
Garcia-Perez, Guillermo ;
Rossi, Matteo A. C. ;
Maniscalco, Sabrina .
NPJ QUANTUM INFORMATION, 2020, 6 (01)
[8]   QUANTUM COMPUTING WITH NEUTRAL ATOMS [J].
Henriet, Loic ;
Beguin, Lucas ;
Signoles, Adrien ;
Lahaye, Thierry ;
Browaeys, Antoine ;
Reymond, Georges-Olivier ;
Jurczak, Christophe .
QUANTUM, 2020, 4
[9]   Quantum entanglement [J].
Horodecki, Ryszard ;
Horodecki, Pawel ;
Horodecki, Michal ;
Horodecki, Karol .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :865-942
[10]   Superconducting quantum computing: a review [J].
Huang, He-Liang ;
Wu, Dachao ;
Fan, Daojin ;
Zhu, Xiaobo .
SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (08)