Influence of ultrafine-grained structure of Ti-42Nb-7Zr alloy on energy dissipation and storage under quasi-static tension

被引:0
作者
Legostaeva, E. V. [1 ]
Eroshenko, A. Yu. [1 ]
Vavilov, V. P. [2 ]
Skripnyak, V. A. [3 ]
Uvarkin, P. V. [1 ]
Tolmachev, A. I. [1 ]
Bataev, V. A. [4 ]
Chulkov, A. O. [2 ]
Kozulin, A. A. [3 ]
Skripnyak, V. V. [3 ]
Sharkeev, Yu. P. [1 ,2 ]
机构
[1] Inst Strength Phys & Mat Sci SB RAS, Tomsk 634055, Russia
[2] Natl Res Tomsk Polytech Univ, Tomsk 634050, Russia
[3] Natl Res Tomsk State Univ, Tomsk 634050, Russia
[4] Novosibirsk State Tech Univ, Novosibirsk 630073, Russia
关键词
Ultrafine-grained alloy; Severe plastic deformation; Microstructure; Tensile test; Infrared thermography; Energy dissipation and storage;
D O I
10.1016/j.matlet.2024.137241
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ultrafine-grained (UFG) structure and plastic deformation of the Ti-42Nb-7Zr alloy have been investigated using infrared thermography. The initial stage occurs at a constant temperature when the total energy of plastic strain absorbed by the alloy is 1.75 times higher for the UFG alloy, than for the alloy with a coarse-grained structure. This fact is due to substructural strengthening caused by severe plastic deformation and dispersion hardening with omega-phase nanoparticles. The amount of heat released before the UFG alloy fracture is 2 times larger than the amount of stored energy, and this results in localized softening of the UFG alloy prior to its fracture.
引用
收藏
页数:4
相关论文
共 8 条
[1]   Infrared thermography for condition monitoring - A review [J].
Bagavathiappan, S. ;
Lahiri, B. B. ;
Saravanan, T. ;
Philip, John ;
Jayakumar, T. .
INFRARED PHYSICS & TECHNOLOGY, 2013, 60 :35-55
[2]  
Glezer AM, 2017, PLASTIC DEFORMATION OF NANOSTRUCTURED MATERIALS, P1, DOI 10.1201/9781315111964
[3]   Energy Storage and Dissipation in Consecutive Tensile Load-Unload Cycles of Gum Metal [J].
Golasinski, Karol Marek ;
Staszczak, Maria ;
Pieczyska, Elzbieta Alicja .
MATERIALS, 2023, 16 (09)
[4]   Recent metallic materials for biomedical applications [J].
Niinomi, M .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (03) :477-486
[5]   Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading [J].
Plekhov, O. A. ;
Saintier, N. ;
Palin-Luc, T. ;
Uvarov, S. V. ;
Naimark, O. B. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 462 (1-2) :367-369
[6]   Research on the processes of deformation and failure in coarse- and ultrafine-grain states of Zr1-Nb alloys by digital image correlation and infrared thermography [J].
Sharkeev, Yu P. ;
Vavilov, V. P. ;
Skrypnyak, V. A. ;
Legostaeva, E., V ;
Eroshenko, A. Yu ;
Belyavskaya, O. A. ;
Ustinov, A. M. ;
Klopotov, A. A. ;
Chulkov, A. O. ;
Kozulin, A. A. ;
Skrypnyak, V. V. ;
Zhilyakov, A. Yu ;
Kouznetsov, V. P. ;
Kuimova, M., V .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 784
[7]   A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at.%) alloys [J].
Sun, F. ;
Hao, Y. L. ;
Nowak, S. ;
Gloriant, T. ;
Laheurte, P. ;
Prima, F. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2011, 4 (08) :1864-1872
[8]   Structure and Phase Composition of Biomedical Alloys of the Ti - Nb System in Cast Condition and After Heat Treatment [J].
Thoemmes, A. ;
Ivanov, I. V. ;
Ruktuev, A. A. ;
Lazurenko, D. V. ;
Bataev, I. A. .
METAL SCIENCE AND HEAT TREATMENT, 2019, 60 (9-10) :659-665