Deep neural networks for predicting the affinity landscape of protein-protein interactions

被引:1
作者
Meiri, Reut [1 ]
Lotati, Shay-Lee Aharoni [2 ,3 ]
Orenstein, Yaron [4 ,5 ]
Papo, Niv [2 ,3 ]
机构
[1] Ben Gurion Univ Negev, Sch Elect & Comp Engn, Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Avram & Stella Goldstein Goren Dept Biotechnol Eng, Beer Sheva, Israel
[3] Ben Gurion Univ Negev, Natl Inst Biotechnol Negev, Beer Sheva, Israel
[4] Bar Ilan Univ, Dept Comp Sci, Ramat Gan, Israel
[5] Bar Ilan Univ, Mina & Everard Goodman Fac Life Sci, Ramat Gan, Israel
基金
美国国家卫生研究院;
关键词
INHIBITORS; SPECIFICITY; ANTIBODIES; LENGTH; SPOTS;
D O I
10.1016/j.isci.2024.110772
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Studies determining protein-protein interactions (PPIs) by deep mutational scanning have focused mainly on a narrow range of affinities within complexes and thus include only partial coverage of the mutation space of given proteins. By inserting an affinity-reducing N-terminal alanine in the N-terminal domain of the tissue inhibitor of metalloproteinases-2 (N-TIMP2), we overcame the limitation of its narrow affinity range for matrix metalloproteinase 9 (MMP9(CAT)). We trained deep neural networks (DNNs) to quantitatively predict the binding affinity of unobserved wild-type variants and variants carrying an N-terminal alanine. Good correlation was obtained between predicted and observed log(2) enrichment ratio (ER) values, which also correlated with the affinity of N-TIMP2 variants to MMP9(CAT). Our ability to predict affinities of unobserved N-TIMP2 variants was confirmed on an independent dataset of experimentally validated N-TIMP2 proteins. This ability is of significant importance in the field of PPI prediction and for developing therapies targeting these interactions.
引用
收藏
页数:20
相关论文
共 37 条
[1]   Quantitative mapping of binding specificity landscapes for homologous targets by using a high-throughput method [J].
Aharon, Lidan ;
Aharoni, Shay-Lee ;
Radisky, Evette S. ;
Papo, Niv .
BIOCHEMICAL JOURNAL, 2020, 477 (09) :1701-1719
[2]  
Angelini A, 2015, METHODS MOL BIOL, V1319, P3, DOI 10.1007/978-1-4939-2748-7_1
[3]  
Arkadash Valeria, 2018, Oncotarget, V9, P32036, DOI [10.18632/oncotarget.25885, 10.18632/oncotarget.25885]
[4]   Development of High Affinity and High Specificity Inhibitors of Matrix Metalloproteinase 14 through Computational Design and Directed Evolution [J].
Arkadash, Valeria ;
Yosef, Gal ;
Shirian, Jason ;
Cohen, Itay ;
Horev, Yuval ;
Grossman, Moran ;
Sagi, Irit ;
Radisky, Evette S. ;
Shifman, Julia M. ;
Papo, Niv .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (08) :3481-3495
[5]   Isolating and engineering human antibodies using yeast surface display [J].
Chao, Ginger ;
Lau, Wai L. ;
Hackel, Benjamin J. ;
Sazinsky, Stephen L. ;
Lippow, Shaun M. ;
Wittrup, K. Dane .
NATURE PROTOCOLS, 2006, 1 (02) :755-768
[6]   Hot spots in protein-protein interfaces: Towards drug discovery [J].
Cukuroglu, Engin ;
Engin, H. Billur ;
Gursoy, Attila ;
Keskin, Ozlem .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2014, 116 (2-3) :165-173
[7]   GeneORator: An Effective Strategy for Navigating Protein Sequence Space More Efficiently through Boolean OR-Type DNA Libraries [J].
Currin, Andrew ;
Kwok, Jane ;
Sadler, Joanna C. ;
Bell, Elizabeth L. ;
Swainston, Neil ;
Ababi, Maria ;
Day, Philip ;
Turner, Nicholas J. ;
Kell, Douglas B. .
ACS SYNTHETIC BIOLOGY, 2019, 8 (06) :1371-1378
[8]   Measuring the activity of protein variants on a large scale using deep mutational scanning [J].
Fowler, Douglas M. ;
Stephany, Jason J. ;
Fields, Stanley .
NATURE PROTOCOLS, 2014, 9 (09) :2267-2284
[9]  
Fowler DM, 2014, NAT METHODS, V11, P801, DOI [10.1038/NMETH.3027, 10.1038/nmeth.3027]
[10]   Neural networks to learn protein sequence-function relationships from deep mutational scanning data [J].
Gelman, Sam ;
Fahlberg, Sarah A. ;
Heinzelman, Pete ;
Romero, Philip A. ;
Gitter, Anthony .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (48)