Solvation structure dependent ion transport and desolvation mechanism for fast-charging Li-ion batteries

被引:1
|
作者
Fan, Zhenyu [1 ]
Zhang, Jingwei [1 ]
Wu, Lanqing [1 ]
Yu, Huaqing [1 ]
Li, Jia [1 ]
Li, Kun [1 ]
Zhao, Qing [1 ,2 ]
机构
[1] Nankai Univ, Key Lab Adv Energy Mat Chem, State Key Lab Adv Chem Power Sources, Frontiers Sci Ctr New Organ Matter,Coll Chem,,Mini, Tianjin 300071, Peoples R China
[2] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
LITHIUM; ELECTROLYTES; STABILITY;
D O I
10.1039/d4sc05464d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The solvation structures of Li+ in electrolytes play prominent roles in determining the fast-charging capabilities of lithium-ion batteries (LIBs), which are in urgent demand for smart electronic devices and electric vehicles. Nevertheless, a comprehensive understanding of how solvation structures affect ion transport through the electrolyte bulk and interfacial charge transfer reactions remains elusive. We report that the charge transfer reaction involving the desolvation process is the rate-determining step of the fast charging when ion conductivity reaches a certain value as determined by investigating electrolytes with eight conventional solvents (linear/cyclic carbonate/ether). The physicochemical characteristics of solvent molecules can result in strong ion-ion, moderate ion-dipole, strong ion-dipole, and weak ion-dipole/ion-ion interactions, respectively, in which the speed of the charge transfer reaction follows the above order of interactions. Among all solvents, dioxolane (DOL) is found to enable strong ion-ion interactions in electrolytes and thus exhibits exceptional fast-charging performance and it can still retain 60% of the initial capacity at 20C (1C = 170 mA g-1) with a polarization of merely 0.35 V. Further experimental characterization and theoretical calculation reveal that the aggregates in DOL electrolytes contribute to hopping assisted ion transport and facilitate the desolvation process of Li+. Our results deepen the fundamental understanding of the behavior of Li+ solvation and provide an effective guiding principle for electrolyte design for fast-charging batteries. Solvation structures significantly affect electrolyte kinetics, with notable enhancements from CIPs to SSIPs to AGGs. Electrolytes such as DOL Ele., with abundant AGGs, facilitate ion transport and desolvation through a hopping-assisted mechanism.
引用
收藏
页码:17161 / 17172
页数:12
相关论文
共 50 条
  • [41] A Layered Organic Cathode for High-Energy, Fast-Charging, and Long-Lasting Li-Ion Batteries
    Chen, Tianyang
    Banda, Harish
    Wang, Jiande
    Oppenheim, Julius J.
    Franceschi, Alessandro
    Dincac, Mircea
    ACS CENTRAL SCIENCE, 2024, 10 (03) : 569 - 578
  • [42] Low-Temperature Synthesis of Lithium Lanthanum Titanate/Carbon Nanowires for Fast-Charging Li-Ion Batteries
    Zheng, Nan
    Zhang, Chang
    Lv, Yinjie
    Cheng, Lvyang
    Yao, Lei
    Liu, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (09) : 11330 - 11338
  • [43] A Deep Reinforcement Learning Framework for Fast Charging of Li-Ion Batteries
    Park, Saehong
    Pozzi, Andrea
    Whitmeyer, Michael
    Perez, Hector
    Kandel, Aaron
    Kim, Geumbee
    Choi, Yohwan
    Joe, Won Tae
    Raimondo, Davide M.
    Moura, Scott
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (02) : 2770 - 2784
  • [44] Fast Charging Li-Ion Batteries for a New Era of Electric Vehicles
    Li, Matthew
    Feng, Ming
    Luo, Dan
    Chen, Zhongwei
    CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (10):
  • [45] An Algorithmic Safety VEST For Li-ion Batteries During Fast Charging
    Mohtat, Peyman
    Pannala, Sravan
    Sulzer, Valentin
    Siegel, Jason B.
    Stefanopoulou, Anna G.
    IFAC PAPERSONLINE, 2021, 54 (20): : 522 - 527
  • [46] Two studies highlight battery advances-Paintable Li-ion batteries and fast-charging Ni-Fe batteries
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 2012, 91 (06): : 15 - 16
  • [47] Li4Ti5O12-Hard carbon composite anode for fast-charging Li-Ion batteries
    Saneifar, Hamidreza
    Liu, Jian
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 929
  • [48] Balancing the Ion/Electron Transport of Graphite Anodes by a La-Doped TiNb2O7 Functional Coating for Fast-Charging Li-Ion Batteries
    Sheng, Yeliang
    Yue, Xinyang
    Hao, Wei
    Dong, Yongteng
    Liu, Yakun
    Liang, Zheng
    NANO LETTERS, 2024, 24 (12) : 3694 - 3701
  • [49] Safe and fast-charging Li-ion battery with long shelf life for power applications
    Zaghib, K.
    Dontigny, M.
    Guerfi, A.
    Charest, P.
    Rodrigues, I.
    Mauger, A.
    Julien, C. M.
    JOURNAL OF POWER SOURCES, 2011, 196 (08) : 3949 - 3954
  • [50] Decent Fast-Charging Performance of Li-Ion Battery Achieved by Modifying Electrolyte Formulation and Charging Protocol
    Zhang, Sheng S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (06)